BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37279998)

  • 1. Recoding UAG to selenocysteine in
    Hoffman KS; Chung CZ; Mukai T; Krahn N; Jiang HK; Balasuriya N; O'Donoghue P; Söll D
    RNA; 2023 Sep; 29(9):1400-1410. PubMed ID: 37279998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Facile Method for Producing Selenocysteine-Containing Proteins.
    Mukai T; Sevostyanova A; Suzuki T; Fu X; Söll D
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7215-7219. PubMed ID: 29631320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The unique tRNA
    Serrão VHB; Silva IR; da Silva MTA; Scortecci JF; de Freitas Fernandes A; Thiemann OH
    Amino Acids; 2018 Sep; 50(9):1145-1167. PubMed ID: 29948343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recoding of the selenocysteine UGA codon by cysteine in the presence of a non-canonical tRNA
    Vargas-Rodriguez O; Englert M; Merkuryev A; Mukai T; Söll D
    RNA Biol; 2018; 15(4-5):471-479. PubMed ID: 29879865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA
    Vindry C; Guillin O; Mangeot PE; Ohlmann T; Chavatte L
    Cells; 2019 Jun; 8(6):. PubMed ID: 31212706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Recoding of Selenocysteine in Nature.
    Mukai T; Englert M; Tripp HJ; Miller C; Ivanova NN; Rubin EM; Kyrpides NC; Söll D
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5337-41. PubMed ID: 26991476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expressing recombinant selenoproteins using redefinition of a single UAG codon in an RF1-depleted E. coli host strain.
    Cheng Q; Arnér ESJ
    Methods Enzymol; 2022; 662():95-118. PubMed ID: 35101220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of selenocysteine, the 21st amino acid in the genetic code, and a novel pathway for cysteine biosynthesis.
    Turanov AA; Xu XM; Carlson BA; Yoo MH; Gladyshev VN; Hatfield DL
    Adv Nutr; 2011 Mar; 2(2):122-8. PubMed ID: 22332041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.
    Fu X; Söll D; Sevostyanova A
    RNA Biol; 2018; 15(4-5):461-470. PubMed ID: 29447106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Recombinant Mammalian Selenoproteins through Genetic Code Expansion with Photocaged Selenocysteine.
    Peeler JC; Falco JA; Kelemen RE; Abo M; Chartier BV; Edinger LC; Chen J; Chatterjee A; Weerapana E
    ACS Chem Biol; 2020 Jun; 15(6):1535-1540. PubMed ID: 32330002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seryl-tRNA synthetase specificity for tRNA
    de Freitas Fernandes A; Serrão VHB; Scortecci JF; Thiemann OH
    Biochim Biophys Acta Proteins Proteom; 2020 Aug; 1868(8):140438. PubMed ID: 32330624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the Selenoprotein S Positive UGA Recoding (SPUR) element and its position-dependent activity.
    Cockman EM; Narayan V; Willard B; Shetty SP; Copeland PR; Driscoll DM
    RNA Biol; 2019 Dec; 16(12):1682-1696. PubMed ID: 31432740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intein-based Design Expands Diversity of Selenocysteine Reporters.
    Chung CZ; Krahn N; Crnković A; Söll D
    J Mol Biol; 2022 Apr; 434(8):167199. PubMed ID: 34411545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translational redefinition of UGA codons is regulated by selenium availability.
    Howard MT; Carlson BA; Anderson CB; Hatfield DL
    J Biol Chem; 2013 Jul; 288(27):19401-13. PubMed ID: 23696641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthetic tRNA for EF-Tu mediated selenocysteine incorporation in vivo and in vitro.
    Miller C; Bröcker MJ; Prat L; Ip K; Chirathivat N; Feiock A; Veszprémi M; Söll D
    FEBS Lett; 2015 Aug; 589(17):2194-9. PubMed ID: 26160755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs.
    Fu X; Crnković A; Sevostyanova A; Söll D
    FEBS Lett; 2018 Nov; 592(22):3759-3768. PubMed ID: 30317559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis.
    Low SC; Harney JW; Berry MJ
    J Biol Chem; 1995 Sep; 270(37):21659-64. PubMed ID: 7665581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New developments in selenium biochemistry: selenocysteine biosynthesis in eukaryotes and archaea.
    Xu XM; Carlson BA; Zhang Y; Mix H; Kryukov GV; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    Biol Trace Elem Res; 2007 Dec; 119(3):234-41. PubMed ID: 17916946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenocysteine biosynthesis and insertion machinery in Naegleria gruberi.
    da Silva MT; Caldas VE; Costa FC; Silvestre DA; Thiemann OH
    Mol Biochem Parasitol; 2013 Apr; 188(2):87-90. PubMed ID: 23603359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.