BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37280126)

  • 1. Deep Learning Accelerated Image Reconstruction of Fluid-Attenuated Inversion Recovery Sequence in Brain Imaging: Reduction of Acquisition Time and Improvement of Image Quality.
    Estler A; Hauser TK; Mengel A; Brunnée M; Zerweck L; Richter V; Zuena M; Schuhholz M; Ernemann U; Gohla G
    Acad Radiol; 2024 Jan; 31(1):180-186. PubMed ID: 37280126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Deep Learning-based Super-Resolution and Partial Fourier Reconstruction for Gradient Echo Sequences in Abdominal MRI at 3 Tesla: Shortening Breath-Hold Time and Improving Image Sharpness and Lesion Conspicuity.
    Almansour H; Herrmann J; Gassenmaier S; Lingg A; Nickel MD; Kannengiesser S; Arberet S; Othman AE; Afat S
    Acad Radiol; 2023 May; 30(5):863-872. PubMed ID: 35810067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-accelerated image reconstruction in back pain-MRI imaging: reduction of acquisition time and improvement of image quality.
    Estler A; Hauser TK; Brunnée M; Zerweck L; Richter V; Knoppik J; Örgel A; Bürkle E; Adib SD; Hengel H; Nikolaou K; Ernemann U; Gohla G
    Radiol Med; 2024 Mar; 129(3):478-487. PubMed ID: 38349416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of an accelerated 2D-multi-contrast knee MRI protocol using deep-learning image reconstruction: a prospective intraindividual comparison with a standard MRI protocol.
    Herrmann J; Keller G; Gassenmaier S; Nickel D; Koerzdoerfer G; Mostapha M; Almansour H; Afat S; Othman AE
    Eur Radiol; 2022 Sep; 32(9):6215-6229. PubMed ID: 35389046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning-Based Superresolution Reconstruction for Upper Abdominal Magnetic Resonance Imaging: An Analysis of Image Quality, Diagnostic Confidence, and Lesion Conspicuity.
    Almansour H; Gassenmaier S; Nickel D; Kannengiesser S; Afat S; Weiss J; Hoffmann R; Othman AE
    Invest Radiol; 2021 Aug; 56(8):509-516. PubMed ID: 33625063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning-accelerated image reconstruction in MRI of the orbit to shorten acquisition time and enhance image quality.
    Estler A; Zerweck L; Brunnée M; Estler B; Richter V; Örgel A; Bürkle E; Becker H; Hurth H; Stahl S; Konrad EM; Kelbsch C; Ernemann U; Hauser TK; Gohla G
    J Neuroimaging; 2024; 34(2):232-240. PubMed ID: 38195858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressed Sensing-Sensitivity Encoding (CS-SENSE) Accelerated Brain Imaging: Reduced Scan Time without Reduced Image Quality.
    Vranic JE; Cross NM; Wang Y; Hippe DS; de Weerdt E; Mossa-Basha M
    AJNR Am J Neuroradiol; 2019 Jan; 40(1):92-98. PubMed ID: 30523142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of contrast-enhanced T1-weighted FLAIR with BLADE, and spin-echo T1-weighted sequences in intracranial MRI.
    Alkan O; Kizilkiliç O; Yildirim T; Alibek S
    Diagn Interv Radiol; 2009 Jun; 15(2):75-80. PubMed ID: 19517375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utility of accelerated T2-weighted turbo spin-echo imaging with deep learning reconstruction in female pelvic MRI: a multi-reader study.
    Lee EJ; Hwang J; Park S; Bae SH; Lim J; Chang YW; Hong SS; Oh E; Nam BD; Jeong J; Sung JK; Nickel D
    Eur Radiol; 2023 Nov; 33(11):7697-7706. PubMed ID: 37314472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T.
    Herrmann J; Benkert T; Brendlin A; Gassenmaier S; Hölldobler T; Maennlin S; Almansour H; Lingg A; Weiland E; Afat S
    Acad Radiol; 2024 Mar; 31(3):921-928. PubMed ID: 37500416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain imaging: Comparison of T1W FLAIR BLADE with conventional T1W SE.
    Mavroidis P; Giankou E; Tsikrika A; Kapsalaki E; Chatzigeorgiou V; Batsikas G; Zaimis G; Kostopoulos S; Glotsos D; Ninos K; Georgountzos V; Kavouras D; Lavdas E
    Magn Reson Imaging; 2017 Apr; 37():234-242. PubMed ID: 27939435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-driven synthetic MRI FLAIR artifact correction via deep neural network.
    Ryu K; Nam Y; Gho SM; Jang J; Lee HJ; Cha J; Baek HJ; Park J; Kim DH
    J Magn Reson Imaging; 2019 Nov; 50(5):1413-1423. PubMed ID: 30884007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of a Deep Learning-Based Superresolution Algorithm Tailored to Partial Fourier Gradient Echo Sequences of the Abdomen at 1.5 T: Reduction of Breath-Hold Time and Improvement of Image Quality.
    Afat S; Wessling D; Afat C; Nickel D; Arberet S; Herrmann J; Othman AE; Gassenmaier S
    Invest Radiol; 2022 Mar; 57(3):157-162. PubMed ID: 34510101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The clinical feasibility of artificial intelligence-assisted compressed sensing single-shot fluid-attenuated inversion recovery (ACS-SS-FLAIR) for evaluation of uncooperative patients with brain diseases: comparison with the conventional T2-FLAIR with parallel imaging.
    Liu K; Xi B; Sun H; Wang J; Chen C; Wen X; Zhang Y; Zeng M
    Acta Radiol; 2023 May; 64(5):1943-1949. PubMed ID: 36423247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of cerebral gliomas by a new dark fluid sequence, high intensity REduction (HIRE): a preliminary study.
    Essig M; Deimling M; Hawighorst H; Debus J; van Kaick G
    J Magn Reson Imaging; 2000 May; 11(5):506-17. PubMed ID: 10813860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the image quality of 3D FLAIR with a spiral MRI technique.
    Li Z; Pipe JG; Ooi MB; Kuwabara M; Karis JP
    Magn Reson Med; 2020 Jan; 83(1):170-177. PubMed ID: 31393038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time.
    Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R
    Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction.
    Afat S; Herrmann J; Almansour H; Benkert T; Weiland E; Hölldobler T; Nikolaou K; Gassenmaier S
    Diagn Interv Imaging; 2023 Apr; 104(4):178-184. PubMed ID: 36787419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of deep learning-based super-resolution to T1-weighted postcontrast gradient echo imaging of the chest.
    Maennlin S; Wessling D; Herrmann J; Almansour H; Nickel D; Kannengiesser S; Afat S; Gassenmaier S
    Radiol Med; 2023 Feb; 128(2):184-190. PubMed ID: 36609662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated T2-weighted MRI of the liver at 3 T using a single-shot technique with deep learning-based image reconstruction: impact on the image quality and lesion detection.
    Ginocchio LA; Smereka PN; Tong A; Prabhu V; Nickel D; Arberet S; Chandarana H; Shanbhogue KP
    Abdom Radiol (NY); 2023 Jan; 48(1):282-290. PubMed ID: 36171342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.