These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 37280199)

  • 1. In-vivo programmable acoustic manipulation of genetically engineered bacteria.
    Yang Y; Yang Y; Liu D; Wang Y; Lu M; Zhang Q; Huang J; Li Y; Ma T; Yan F; Zheng H
    Nat Commun; 2023 Jun; 14(1):3297. PubMed ID: 37280199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
    Ding X; Lin SC; Kiraly B; Yue H; Li S; Chiang IK; Shi J; Benkovic SJ; Huang TJ
    Proc Natl Acad Sci U S A; 2012 Jul; 109(28):11105-9. PubMed ID: 22733731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of multiple micro-particle trapping--a simulation study.
    Yu Y; Qiu W; Chiu B; Sun L
    Sensors (Basel); 2015 Feb; 15(3):4958-74. PubMed ID: 25734646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-Beam Acoustic Tweezers for Cell Biology: Molecular to In Vivo Level.
    Yoo J; Ahn J; Ha H; Claud Jonas J; Kim C; Ham Kim H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Oct; 71(10):1269-1288. PubMed ID: 39250365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint subarray acoustic tweezers enable controllable cell translation, rotation, and deformation.
    Shen L; Tian Z; Yang K; Rich J; Xia J; Upreti N; Zhang J; Chen C; Hao N; Pei Z; Huang TJ
    Nat Commun; 2024 Oct; 15(1):9059. PubMed ID: 39428395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acousto-dielectric tweezers enable independent manipulation of multiple particles.
    Shen L; Tian Z; Yang K; Rich J; Zhang J; Xia J; Collyer W; Lu B; Hao N; Pei Z; Chen C; Huang TJ
    Sci Adv; 2024 Aug; 10(32):eado8992. PubMed ID: 39110808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular actuators for genetically selective acoustic manipulation of cells.
    Wu D; Baresch D; Cook C; Ma Z; Duan M; Malounda D; Maresca D; Abundo MP; Lee J; Shivaei S; Mittelstein DR; Qiu T; Fischer P; Shapiro MG
    Sci Adv; 2023 Feb; 9(8):eadd9186. PubMed ID: 36812320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Holographic acoustic elements for manipulation of levitated objects.
    Marzo A; Seah SA; Drinkwater BW; Sahoo DR; Long B; Subramanian S
    Nat Commun; 2015 Oct; 6():8661. PubMed ID: 26505138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging.
    Lam KH; Li Y; Li Y; Lim HG; Zhou Q; Shung KK
    Sci Rep; 2016 Nov; 6():37554. PubMed ID: 27874052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells.
    Pan H; Mei D; Xu C; Han S; Wang Y
    Lab Chip; 2023 Jan; 23(2):215-228. PubMed ID: 36420975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of acoustic radiation force using ultrasound: methods and applications.
    Urban MW
    Expert Rev Med Devices; 2018 Nov; 15(11):819-834. PubMed ID: 30350736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A One-Sided Acoustic Trap for Cell Immobilization Using 30-MHz Array Transducer.
    Lim HG; Kim HH; Yoon C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):167-172. PubMed ID: 31514129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic tweezers for the life sciences.
    Ozcelik A; Rufo J; Guo F; Gu Y; Li P; Lata J; Huang TJ
    Nat Methods; 2018 Dec; 15(12):1021-1028. PubMed ID: 30478321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully Microfabricated Surface Acoustic Wave Tweezer for Collection of Submicron Particles and Human Blood Cells.
    Fakhfouri A; Colditz M; Devendran C; Ivanova K; Jacob S; Neild A; Winkler A
    ACS Appl Mater Interfaces; 2023 May; 15(20):24023-24033. PubMed ID: 37188328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable motion control and trajectory manipulation of microparticles through tri-directional symmetrical acoustic tweezers.
    Wang Y; Pan H; Mei D; Xu C; Weng W
    Lab Chip; 2022 Mar; 22(6):1149-1161. PubMed ID: 35134105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular Engineering of Acoustic Protein Nanostructures.
    Lakshmanan A; Farhadi A; Nety SP; Lee-Gosselin A; Bourdeau RW; Maresca D; Shapiro MG
    ACS Nano; 2016 Aug; 10(8):7314-22. PubMed ID: 27351374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts.
    Bourdeau RW; Lee-Gosselin A; Lakshmanan A; Farhadi A; Kumar SR; Nety SP; Shapiro MG
    Nature; 2018 Jan; 553(7686):86-90. PubMed ID: 29300010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring-shaped photoacoustic tweezers for single particle manipulation.
    Zhao Z; Xia J; Huang TJ; Zou J
    Opt Lett; 2022 Feb; 47(4):826-829. PubMed ID: 35167535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.