These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37280494)

  • 1. Carbon emissions predicting and decoupling analysis based on the PSO-ELM combined prediction model: evidence from Chongqing Municipality, China.
    Liu B; Chang H; Li Y; Zhao Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):78849-78864. PubMed ID: 37280494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction and Analysis of CO₂ Emission in Chongqing for the Protection of Environment and Public Health.
    Yang S; Wang Y; Ao W; Bai Y; Li C
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29547505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon peaking prediction scenarios based on different neural network models: A case study of Guizhou Province.
    Lian D; Yang SQ; Yang W; Zhang M; Ran WR
    PLoS One; 2024; 19(6):e0296596. PubMed ID: 38917224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation analysis of carbon peak path in China from a multi-scenario perspective: evidence from random forest and back propagation neural network models.
    Li Y; Huang S; Miao L; Wu Z
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):46711-46726. PubMed ID: 36723842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on application of a hybrid heuristic algorithm in transportation carbon emission.
    Li Y; Dong H; Lu S
    Environ Sci Pollut Res Int; 2021 Sep; 28(35):48610-48627. PubMed ID: 33914250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drivers of the peaking and decoupling between CO
    Gong W; Wang C; Fan Z; Xu Y
    Environ Sci Pollut Res Int; 2022 Jan; 29(3):3864-3878. PubMed ID: 34398378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on the relation of Economy-Energy-Emission (3E) system: evidence from heterogeneous energy in China.
    Ma X; Fan Y; Shi F; Song Y; He Y
    Environ Sci Pollut Res Int; 2022 Sep; 29(41):62592-62610. PubMed ID: 35404037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling relationship between carbon emissions and economic development and prediction of carbon emissions in Henan Province: based on Tapio method and STIRPAT model.
    Wei Z; Wei K; Liu J
    Environ Sci Pollut Res Int; 2023 Apr; 30(18):52679-52691. PubMed ID: 36847941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Coal Dust Wettability Identification Based on GA-BP Model.
    Zheng H; Shi S; Jiang B; Zheng Y; Li S; Wang H
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel economy and carbon emissions prediction model of different countries or regions in the world for energy optimization using improved residual neural network.
    Han Y; Cao L; Geng Z; Ping W; Zuo X; Fan J; Wan J; Lu G
    Sci Total Environ; 2023 Feb; 860():160410. PubMed ID: 36427740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends and driving forces of agricultural carbon emissions: A case study of Anhui, China.
    Qi Y; Liu H; Zhao J; Zhang S; Zhang X; Zhang W; Wang Y; Xu J; Li J; Ding Y
    PLoS One; 2024; 19(2):e0292523. PubMed ID: 38346018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploration of China's net CO
    Li W; Zhang S; Lu C
    Sci Total Environ; 2022 Jul; 831():154909. PubMed ID: 35364146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis and prediction of the temporal and spatial evolution of carbon emissions in China's eight economic regions.
    Yu Z; Zhang Y; Zhang J; Zhang W
    PLoS One; 2022; 17(12):e0277906. PubMed ID: 36454795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of CO2 emissions in China by generalized regression neural network optimized with fruit fly optimization algorithm.
    Yue H; Bu L
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80676-80692. PubMed ID: 37301812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empirical assessment of carbon emissions in Guangdong Province within the framework of carbon peaking and carbon neutrality: a lasso-TPE-BP neural network approach.
    Chen R; Ye M; Li Z; Ma Z; Yang D; Li S
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):121647-121665. PubMed ID: 37953421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Goal of Carbon Peaking, Carbon Emissions, and the Economic Effects of China's Energy Planning Policy: Analysis Using a CGE Model.
    Hu H; Dong W
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the affecting factors and decoupling analysis of energy industrial carbon emissions in Liaoning, China.
    Wen L; Zhang Z
    Environ Sci Pollut Res Int; 2019 May; 26(14):14616-14626. PubMed ID: 30877535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forecast of China's carbon emissions under the background of carbon neutrality.
    Shi M
    Environ Sci Pollut Res Int; 2022 Jun; 29(28):43019-43033. PubMed ID: 35091929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling between Economic Growth and Carbon Emissions: Based on Four Major Regions in China.
    Shen T; Hu R; Hu P; Tao Z
    Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon peak forecast and low carbon policy choice of transportation industry in China: scenario prediction based on STIRPAT model.
    Li C; Zhang Z; Wang L
    Environ Sci Pollut Res Int; 2023 May; 30(22):63250-63271. PubMed ID: 36961638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.