These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37280578)

  • 41. Effects of scaffold microstructure and low intensity pulsed ultrasound on chondrogenic differentiation of human mesenchymal stem cells.
    Aliabouzar M; Lee SJ; Zhou X; Zhang GL; Sarkar K
    Biotechnol Bioeng; 2018 Feb; 115(2):495-506. PubMed ID: 29064570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The 3D-Printed Ordered Bredigite Scaffold Promotes Pro-Healing of Critical-Sized Bone Defects by Regulating Macrophage Polarization.
    Xuan Y; Li L; Zhang C; Zhang M; Cao J; Zhang Z
    Int J Nanomedicine; 2023; 18():917-932. PubMed ID: 36844434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues.
    Natarajan ABM; Sivadas VPD; Nair PDPD
    Biomed Mater; 2021 Jul; 16(5):. PubMed ID: 34265754
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Effect of xanthohumol-loaded anti-inflammatory scaffolds on cartilage regeneration in goats].
    Xu S; Zhao S; Jian Y; Xu Y; Liu W; Shao X; Fan J; Wang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 Oct; 36(10):1296-1304. PubMed ID: 36310469
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering.
    Cao H; Kuboyama N
    Bone; 2010 Feb; 46(2):386-95. PubMed ID: 19800045
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rat Calvarial Bone Regeneration by 3D-Printed β-Tricalcium Phosphate Incorporating MicroRNA-200c.
    Remy MT; Akkouch A; He L; Eliason S; Sweat ME; Krongbaramee T; Fei F; Qian F; Amendt BA; Song X; Hong L
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4521-4534. PubMed ID: 34437807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair.
    Zou F; Jiang J; Lv F; Xia X; Ma X
    J Nanobiotechnology; 2020 Feb; 18(1):39. PubMed ID: 32103765
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D printed PLGA/MgO/PDA composite scaffold by low-temperature deposition manufacturing for bone tissue engineering applications.
    Tan L; Ye Z; Zhuang W; Mao B; Li H; Li X; Wu J; Sang H
    Regen Ther; 2023 Dec; 24():617-629. PubMed ID: 38034857
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model.
    Xu Z; Sun Y; Dai H; Ma Y; Bing H
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.
    Pati F; Song TH; Rijal G; Jang J; Kim SW; Cho DW
    Biomaterials; 2015 Jan; 37():230-41. PubMed ID: 25453953
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair.
    Wu N; Liu J; Ma W; Dong X; Wang F; Yang D; Xu Y
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33202398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 55. β-TCP from 3D-printed composite scaffolds acts as an effective phosphate source during osteogenic differentiation of human mesenchymal stromal cells.
    Hatt LP; van der Heide D; Armiento AR; Stoddart MJ
    Front Cell Dev Biol; 2023; 11():1258161. PubMed ID: 37965582
    [No Abstract]   [Full Text] [Related]  

  • 56. Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect.
    Zhang Y; Wang C; Fu L; Ye S; Wang M; Zhou Y
    Molecules; 2019 Apr; 24(9):. PubMed ID: 31035401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering 3D printed bioactive composite scaffolds based on the combination of aliphatic polyester and calcium phosphates for bone tissue regeneration.
    Backes EH; Fernandes EM; Diogo GS; Marques CF; Silva TH; Costa LC; Passador FR; Reis RL; Pessan LA
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111928. PubMed ID: 33641921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication.
    Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G
    Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2].
    Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.