These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37280678)

  • 1. Epiphany: predicting Hi-C contact maps from 1D epigenomic signals.
    Yang R; Das A; Gao VR; Karbalayghareh A; Noble WS; Bilmes JA; Leslie CS
    Genome Biol; 2023 Jun; 24(1):134. PubMed ID: 37280678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Connecting high-resolution 3D chromatin organization with epigenomics.
    Feng F; Yao Y; Wang XQD; Zhang X; Liu J
    Nat Commun; 2022 Apr; 13(1):2054. PubMed ID: 35440119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning.
    Wu H; Zhou B; Zhou H; Zhang P; Wang M
    Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Author Correction: Epiphany: predicting Hi-C contact maps from 1D epigenomic signals.
    Yang R; Das A; Gao VR; Karbalayghareh A; Noble WS; Bilmes JA; Leslie CS
    Genome Biol; 2024 May; 25(1):132. PubMed ID: 38783328
    [No Abstract]   [Full Text] [Related]  

  • 6. Network models of chromatin structure.
    Pancaldi V
    Curr Opin Genet Dev; 2023 Jun; 80():102051. PubMed ID: 37245241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO.
    Wang H; Yang J; Zhang Y; Qian J; Wang J
    Nat Commun; 2022 May; 13(1):2645. PubMed ID: 35551182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
    Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D
    Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep generative modeling and clustering of single cell Hi-C data.
    Liu Q; Zeng W; Zhang W; Wang S; Chen H; Jiang R; Zhou M; Zhang S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36458445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.
    Di Pierro M; Cheng RR; Lieberman Aiden E; Wolynes PG; Onuchic JN
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):12126-12131. PubMed ID: 29087948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer physics reveals a combinatorial code linking 3D chromatin architecture to 1D chromatin states.
    Esposito A; Bianco S; Chiariello AM; Abraham A; Fiorillo L; Conte M; Campanile R; Nicodemi M
    Cell Rep; 2022 Mar; 38(13):110601. PubMed ID: 35354035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.
    Wang J; Lu L; Zheng S; Wang D; Jin L; Zhang Q; Li M; Zhang Z
    Adv Sci (Weinh); 2023 Sep; 10(27):e2301058. PubMed ID: 37515382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChromaFold predicts the 3D contact map from single-cell chromatin accessibility.
    Gao VR; Yang R; Das A; Luo R; Luo H; McNally DR; Karagiannidis I; Rivas MA; Wang ZM; Barisic D; Karbalayghareh A; Wong W; Zhan YA; Chin CR; Noble W; Bilmes JA; Apostolou E; Kharas MG; Béguelin W; Viny AD; Huangfu D; Rudensky AY; Melnick AM; Leslie CS
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Chromatin Interactions from DNA Sequence Using DeepC.
    Schwessinger R
    Methods Mol Biol; 2023; 2624():19-42. PubMed ID: 36723807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing 3D interaction maps from 1D epigenomes.
    Zhu Y; Chen Z; Zhang K; Wang M; Medovoy D; Whitaker JW; Ding B; Li N; Zheng L; Wang W
    Nat Commun; 2016 Mar; 7():10812. PubMed ID: 26960733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenome overlap measure (EPOM) for comparing tissue/cell types based on chromatin states.
    Li WV; Razaee ZS; Li JJ
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):10. PubMed ID: 26817822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks.
    Hovenga V; Kalita J; Oluwadare O
    Comput Struct Biotechnol J; 2023; 21():812-836. PubMed ID: 36698967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Epigenomic Data are more Informative than Local Genome Sequence Data in Predicting Enhancer-Promoter Interactions Using Neural Networks.
    Xiao M; Zhuang Z; Pan W
    Genes (Basel); 2019 Dec; 11(1):. PubMed ID: 31905774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.