These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37280722)

  • 1. Analytical solution to Windkessel models using piecewise linear aortic flow waveform.
    Gnudi G
    Physiol Meas; 2023 Jun; 44(6):. PubMed ID: 37280722
    [No Abstract]   [Full Text] [Related]  

  • 2. New closed-form expressions for the estimation of arterial windkessel compliance.
    Gnudi G
    Comput Biol Med; 1998 May; 28(3):207-23. PubMed ID: 9784960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical relationship between arterial input impedance and the three-element Windkessel series resistance.
    Gnudi G
    Med Biol Eng Comput; 1998 Jul; 36(4):480-4. PubMed ID: 10198533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arterial windkessel parameter estimation: a new time-domain method.
    Shim Y; Pasipoularides A; Straley CA; Hampton TG; Soto PF; Owen CH; Davis JW; Glower DD
    Ann Biomed Eng; 1994; 22(1):66-77. PubMed ID: 8060028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the three-element windkessel model incorporating a pressure-dependent compliance.
    Cappello A; Gnudi G; Lamberti C
    Ann Biomed Eng; 1995; 23(2):164-77. PubMed ID: 7605053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of isoflurane and halothane on aortic input impedance quantified using a three-element Windkessel model.
    Hettrick DA; Pagel PS; Warltier DC
    Anesthesiology; 1995 Aug; 83(2):361-73. PubMed ID: 7631959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase in pulse wavelength causes the systemic arterial tree to degenerate into a classical windkessel.
    Mohiuddin MW; Laine GA; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1164-71. PubMed ID: 17483241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First- and third-order models for determining arterial compliance.
    Finkelstein SM; Cohn JN
    J Hypertens Suppl; 1992 Aug; 10(6):S11-4. PubMed ID: 1432309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total arterial inertance as the fourth element of the windkessel model.
    Stergiopulos N; Westerhof BE; Westerhof N
    Am J Physiol; 1999 Jan; 276(1):H81-8. PubMed ID: 9887020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-domain formulation of asymmetric T-tube model of arterial system.
    Campbell KB; Burattini R; Bell DL; Kirkpatrick RD; Knowlen GG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1761-74. PubMed ID: 2360669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Left ventricular ejection: model solution by collocation, an approximate analytical method.
    Stern RH; Rasmussen H
    Comput Biol Med; 1996 May; 26(3):255-61. PubMed ID: 8725776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance.
    Wang JJ; Flewitt JA; Shrive NG; Parker KH; Tyberg JV
    Am J Physiol Heart Circ Physiol; 2006 Jan; 290(1):H154-62. PubMed ID: 16113064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical model of pressure and flow waveforms in the aortic root.
    Žikić D
    Eur Biophys J; 2017 Jan; 46(1):41-48. PubMed ID: 27160184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-Element Fractional-Order Windkessel Model to Assess the Arterial Input Impedance.
    Bahloul MA; Laleg Kirati TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5018-5023. PubMed ID: 31946987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implication of the systolic hump in systemic arterial pressure waves.
    Okai O; Watanabe A
    Med Biol Eng Comput; 1998 Sep; 36(5):587-91. PubMed ID: 10367442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of a nonlinear resistance element upon in vitro aortic pressure tracings and aortic valve motions.
    Scharfschwerdt M; Misfeld M; Sievers HH
    ASAIO J; 2004; 50(5):498-502. PubMed ID: 15497392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid Windkessel-Womersley model for blood flow in arteries.
    Aboelkassem Y; Virag Z
    J Theor Biol; 2019 Feb; 462():499-513. PubMed ID: 30528559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Windkessel as a model of aortic input impedance.
    Burkhoff D; Alexander J; Schipke J
    Am J Physiol; 1988 Oct; 255(4 Pt 2):H742-53. PubMed ID: 3177666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of aortic pressure power components and their link to overall elastic and resistive arterial properties.
    Burattini R; Campbell KB
    Med Biol Eng Comput; 1999 May; 37(3):366-76. PubMed ID: 10505389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.