These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 37280756)

  • 1. Transfer Learning for Effective Urolithiasis Detection.
    Choi HS; Kim JS; Whangbo TK; Kim KH
    Int Neurourol J; 2023 May; 27(Suppl 1):S21-26. PubMed ID: 37280756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved Detection of Urolithiasis Using High-Resolution Computed Tomography Images by a Vision Transformer Model.
    Choi HS; Kim JS; Whangbo TK; Eun SJ
    Int Neurourol J; 2023 Nov; 27(Suppl 2):S99-103. PubMed ID: 38048824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided diagnosis with a convolutional neural network algorithm for automated detection of urinary tract stones on plain X-ray.
    Kobayashi M; Ishioka J; Matsuoka Y; Fukuda Y; Kohno Y; Kawano K; Morimoto S; Muta R; Fujiwara M; Kawamura N; Okuno T; Yoshida S; Yokoyama M; Suda R; Saiki R; Suzuki K; Kumazawa I; Fujii Y
    BMC Urol; 2021 Aug; 21(1):102. PubMed ID: 34353306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Evaluation of Urolithiasis Detection Technology Based on a Multimethod Algorithm.
    Park JM; Eun SJ; Na YG
    Int Neurourol J; 2023 Mar; 27(1):70-76. PubMed ID: 37015727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the composition of urinary stones using deep learning.
    Kim US; Kwon HS; Yang W; Lee W; Choi C; Kim JK; Lee SH; Rim D; Han JH
    Investig Clin Urol; 2022 Jul; 63(4):441-447. PubMed ID: 35670006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Learning Segmentation of Urinary Stones in Noncontrast Computed Tomography.
    Kim YI; Song SH; Park J; Youn HJ; Kweon J; Park HK
    J Endourol; 2023 May; 37(5):595-606. PubMed ID: 36924291
    [No Abstract]   [Full Text] [Related]  

  • 7. A Study on the Optimal Artificial Intelligence Model for Determination of Urolithiasis.
    Eun SJ; Yun MS; Whangbo TK; Kim KH
    Int Neurourol J; 2022 Sep; 26(3):210-218. PubMed ID: 36203253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting Glaucoma from Fundus Photographs Using Deep Learning without Convolutions: Transformer for Improved Generalization.
    Fan R; Alipour K; Bowd C; Christopher M; Brye N; Proudfoot JA; Goldbaum MH; Belghith A; Girkin CA; Fazio MA; Liebmann JM; Weinreb RN; Pazzani M; Kriegman D; Zangwill LM
    Ophthalmol Sci; 2023 Mar; 3(1):100233. PubMed ID: 36545260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Value of deep learning reconstruction at ultra-low-dose CT for evaluation of urolithiasis.
    Zhang G; Zhang X; Xu L; Bai X; Jin R; Xu M; Yan J; Jin Z; Sun H
    Eur Radiol; 2022 Sep; 32(9):5954-5963. PubMed ID: 35357541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A deep learning-based model for detecting Leishmania amastigotes in microscopic slides: a new approach to telemedicine.
    Sadeghi A; Sadeghi M; Fakhar M; Zakariaei Z; Sadeghi M; Bastani R
    BMC Infect Dis; 2024 Jun; 24(1):551. PubMed ID: 38824500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urinary Stone Detection on CT Images Using Deep Convolutional Neural Networks: Evaluation of Model Performance and Generalization.
    Parakh A; Lee H; Lee JH; Eisner BH; Sahani DV; Do S
    Radiol Artif Intell; 2019 Jul; 1(4):e180066. PubMed ID: 33937795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Screening of Pediatric Renal Ultrasound Abnormalities: Deep Learning and Transfer Learning Approach.
    Tsai MC; Lu HH; Chang YC; Huang YC; Fu LS
    JMIR Med Inform; 2022 Nov; 10(11):e40878. PubMed ID: 36322109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A retrospective study using machine learning to develop predictive model to identify urinary infection stones in vivo.
    Wu Y; Mo Q; Xie Y; Zhang J; Jiang S; Guan J; Qu C; Wu R; Mo C
    Urolithiasis; 2023 May; 51(1):84. PubMed ID: 37256418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning model-assisted detection of kidney stones on computed tomography.
    Caglayan A; Horsanali MO; Kocadurdu K; Ismailoglu E; Guneyli S
    Int Braz J Urol; 2022; 48(5):830-839. PubMed ID: 35838509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine Learning-Assisted Preoperative Diagnosis of Infection Stones in Urolithiasis Patients.
    Chen T; Zhang Y; Dou Q; Zheng X; Wang F; Zou J; Jia R
    J Endourol; 2022 Aug; 36(8):1091-1098. PubMed ID: 35369740
    [No Abstract]   [Full Text] [Related]  

  • 16. A Machine Learning Approach to Predict the Outcome of Urinary Calculi Treatment Using Shock Wave Lithotripsy: Model Development and Validation Study.
    Moghisi R; El Morr C; Pace KT; Hajiha M; Huang J
    Interact J Med Res; 2022 Mar; 11(1):e33357. PubMed ID: 35293872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia.
    Showkat S; Qureshi S
    Chemometr Intell Lab Syst; 2022 May; 224():104534. PubMed ID: 35291673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting stone composition via machine-learning models trained on intra-operative endoscopic digital images.
    Zhu G; Li C; Guo Y; Sun L; Jin T; Wang Z; Li S; Zhou F
    BMC Urol; 2024 Jan; 24(1):5. PubMed ID: 38172816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning computer vision algorithm for detecting kidney stone composition.
    Black KM; Law H; Aldoukhi A; Deng J; Ghani KR
    BJU Int; 2020 Jun; 125(6):920-924. PubMed ID: 32045113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images.
    Sharma A; Kumar R; Garg P
    Int J Med Inform; 2023 Sep; 177():105142. PubMed ID: 37422969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.