BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37281123)

  • 1. Do Peanut Agglutinin Receptors on Somites Control the Behavior of Neural Cells?: (PNA receptors/somite/resegmentation/rostro-caudal axis/gangliogenesis).
    Asamoto K; Nojyo Y; Aoyama H
    Dev Growth Differ; 1990 Feb; 32(1):91-96. PubMed ID: 37281123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The differing effects of occipital and trunk somites on neural development in the chick embryo.
    Lim TM; Lunn ER; Keynes RJ; Stern CD
    Development; 1987 Jul; 100(3):525-33. PubMed ID: 3652984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of somite cells: independence of cell differentiation and morphogenesis.
    Aoyama H; Asamoto K
    Development; 1988 Sep; 104(1):15-28. PubMed ID: 3253056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of Cell Number in Formation of the Dorsal Root Ganglion Revealed by Transplantation of Quail Neural Crest Cells into Chick Embryos: (dorsal root ganglia/cell number/chick-quail chimera/neural crest/regulation).
    Asamoto K; Nojyo Y; Aoyama H
    Dev Growth Differ; 1992 Oct; 34(5):553-560. PubMed ID: 37281195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryo.
    Stern CD; Keynes RJ
    Development; 1987 Feb; 99(2):261-72. PubMed ID: 3653002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of sensory and sympathetic ganglia: interactions between neural crest and somite cells.
    Kalcheim C; Goldstein RS
    J Physiol (Paris); 1991; 85(3):110-6. PubMed ID: 1818106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of epithelial half-somites in skeletal morphogenesis.
    Goldstein RS; Kalcheim C
    Development; 1992 Oct; 116(2):441-5. PubMed ID: 1286618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The binding pattern of peanut lectin associated with sclerotome migration and the formation of the vertebral axis in the chick embryo.
    Bagnall KM; Sanders EJ
    Anat Embryol (Berl); 1989; 180(5):505-13. PubMed ID: 2619093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restriction of the fate of early migrating trunk neural crest in gangliogenesis of avian embryos.
    Asamoto K; Nojyo Y; Aoyama H
    Int J Dev Biol; 1995 Dec; 39(6):975-84. PubMed ID: 8901200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The contribution made by a single somite to the vertebral column: experimental evidence in support of resegmentation using the chick-quail chimaera model.
    Bagnall KM; Higgins SJ; Sanders EJ
    Development; 1988 May; 103(1):69-85. PubMed ID: 3197634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental investigation into the possible neural crest origin of pancreatic APUD (islet) cells.
    Andrew A
    J Embryol Exp Morphol; 1976 Jun; 35(3):577-93. PubMed ID: 781174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm.
    Mauch TJ; Yang G; Wright M; Smith D; Schoenwolf GC
    Dev Biol; 2000 Apr; 220(1):62-75. PubMed ID: 10720431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consequences of somite manipulation on the pattern of dorsal root ganglion development.
    Kalcheim C; Teillet MA
    Development; 1989 May; 106(1):85-93. PubMed ID: 2627888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of somite and somitocoele cells in the formation of the vertebral motion segment in avian embryos.
    Huang R; Zhi Q; Neubüser A; Müller TS; Brand-Saberi B; Christ B; Wilting J
    Acta Anat (Basel); 1996; 155(4):231-41. PubMed ID: 8883534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental confirmation of the resegmentation theory using chick-quail chimeras.
    Aoyama H; Asamoto K
    Mech Dev; 2000 Dec; 99(1-2):71-82. PubMed ID: 11091075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite.
    Rickmann M; Fawcett JW; Keynes RJ
    J Embryol Exp Morphol; 1985 Dec; 90():437-55. PubMed ID: 3834038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal motor axons and neural crest cells use different molecular guides for segmental migration through the rostral half-somite.
    Koblar SA; Krull CE; Pasquale EB; McLennan R; Peale FD; Cerretti DP; Bothwell M
    J Neurobiol; 2000 Mar; 42(4):437-47. PubMed ID: 10699981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. J1/tenascin-related molecules are not responsible for the segmented pattern of neural crest cells or motor axons in the chick embryo.
    Stern CD; Norris WE; Bronner-Fraser M; Carlson GJ; Faissner A; Keynes RJ; Schachner M
    Development; 1989 Oct; 107(2):309-19. PubMed ID: 2483682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular differences between the rostral and caudal halves of the sclerotome in the chick embryo.
    Norris WE; Stern CD; Keynes RJ
    Development; 1989 Mar; 105(3):541-8. PubMed ID: 2612364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.