These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37281175)

  • 21. Microvillous tip vesicles may be an origin of placental extracellular vesicles.
    Davies R; Griffiths C; Askelund K; Palaiologou E; Cleal JK; Page A; Chatelet DS; Goggin P; Chamley L; Lewis RM
    Placenta; 2022 Jun; 123():24-30. PubMed ID: 35533511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Body structure of marine sponges. VI. Choanocyte chamber structure in the haplosclerida (porifera, demospongiae) and its relevance to the phylogenesis of the group.
    Langenbruch PF; Jones WC
    J Morphol; 1990 Apr; 204(1):1-8. PubMed ID: 29865728
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructure of the somatic portion of the gonads in asteroids, with emphasis on flagellated-collar cells and nutrient transport.
    Walker CW
    J Morphol; 1979 Oct; 162(1):127-161. PubMed ID: 30223632
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flagellar apparatus structure of choanoflagellates.
    Karpov SA
    Cilia; 2016; 5():11. PubMed ID: 27148446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primordial Germ Cells of Synaptula hydriformis (Holothuroidea; Echinodermata) Are Epithelial Flagellated-Collar Cells: Their Apical-Basal Polarity Becomes Primary Egg Polarity.
    Frick JE; Ruppert EE
    Biol Bull; 1996 Oct; 191(2):168-177. PubMed ID: 29220235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anatomy and ultrastructure of the tropical sponge Cladocroce caelum (Haplosclerida, Demospongiae).
    Da Hora J; Cavalcanti FF; Lanna E
    J Morphol; 2018 Dec; 279(12):1872-1886. PubMed ID: 30506663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pluripotency and the origin of animal multicellularity.
    Sogabe S; Hatleberg WL; Kocot KM; Say TE; Stoupin D; Roper KE; Fernandez-Valverde SL; Degnan SM; Degnan BM
    Nature; 2019 Jun; 570(7762):519-522. PubMed ID: 31189954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage?
    Alexander BE; Achlatis M; Osinga R; van der Geest HG; Cleutjens JP; Schutte B; de Goeij JM
    PeerJ; 2015; 3():e820. PubMed ID: 25780772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prey capture and phagocytosis in the choanoflagellate Salpingoeca rosetta.
    Dayel MJ; King N
    PLoS One; 2014; 9(5):e95577. PubMed ID: 24806026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The structure and development of the collar enameloid in two teleost fishes, Halichoeres poecilopterus and Pagrus major.
    Sasagawa I; Ishiyama M
    Anat Embryol (Berl); 1988; 178(6):499-511. PubMed ID: 3223608
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Six major steps in animal evolution: are we derived sponge larvae?
    Nielsen C
    Evol Dev; 2008; 10(2):241-57. PubMed ID: 18315817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell aggregation of the marine sponge Geodia cydonium. Identification of lectin-producing cells.
    Müller WE; Zahn RK; Müller I; Kurelec B; Uhlenbruck G; Vaith P
    Eur J Cell Biol; 1981 Apr; 24(1):28-35. PubMed ID: 7238534
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunocytochemical studies of quaking mice support a role for the myelin-associated glycoprotein in forming and maintaining the periaxonal space and periaxonal cytoplasmic collar of myelinating Schwann cells.
    Trapp BD; Quarles RH; Suzuki K
    J Cell Biol; 1984 Aug; 99(2):594-606. PubMed ID: 6204994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental potential of ciliated cells of ceractinomorph sponge larvae.
    Bergquist PR; Glasgow K
    Exp Biol; 1986; 45(2):111-22. PubMed ID: 3699129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrastructural study of differentiation processes during aggregation of purified sponge archaeocytes.
    Buscema M; De Sutter D; Van de Vyver G
    Wilehm Roux Arch Dev Biol; 1980 Feb; 188(1):45-53. PubMed ID: 28305154
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The architecture of cell differentiation in choanoflagellates and sponge choanocytes.
    Laundon D; Larson BT; McDonald K; King N; Burkhardt P
    PLoS Biol; 2019 Apr; 17(4):e3000226. PubMed ID: 30978201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Note on differentiation of the epithelium of the small intestine in human embryos.
    Vagnerová R
    Folia Morphol (Praha); 1989; 37(1):89-94. PubMed ID: 2759509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrastructural examination of spermiogenesis and spermatozoon ultrastructure in Congo tetra Phenacogrammus interruptus Boulenger, 1899 (Ostariophysi: Characiformes: Alestidae).
    Pecio A
    Folia Biol (Krakow); 2009; 57(1-2):13-21. PubMed ID: 19459455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deviated formation of intestinal glycocalyx in human stomach cancer cells. Another type of signet ring cell.
    Tokumitsu S; Tokumitsu K; Nomura H; Takeuchi T
    Virchows Arch B Cell Pathol; 1978 May; 27(3):217-27. PubMed ID: 208229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microsurgical anatomy of the dural collar (carotid collar) and rings around the clinoid segment of the internal carotid artery.
    Seoane E; Rhoton AL; de Oliveira E
    Neurosurgery; 1998 Apr; 42(4):869-84; discussion 884-6. PubMed ID: 9574652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.