These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37281408)

  • 1. Accumulation and Spatial Distribution of Poly(A)
    Kobayashi S; Mizuno H; Okada M
    Dev Growth Differ; 1988 Jun; 30(3):251-260. PubMed ID: 37281408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrially encoded 16S large ribosomal RNA is concentrated in the posterior polar plasm of early Drosophila embryos but is not required for pole cell formation.
    Ding D; Whittaker KL; Lipshitz HD
    Dev Biol; 1994 Jun; 163(2):503-15. PubMed ID: 7515364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking nucleolar dynamics with GFP-Nopp140 during Drosophila oogenesis and embryogenesis.
    McCain J; Danzy L; Hamdi A; Dellafosse O; DiMario P
    Cell Tissue Res; 2006 Jan; 323(1):105-15. PubMed ID: 16158326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two discrete modes of histone gene expression during oogenesis in Drosophila melanogaster.
    Ambrosio L; Schedl P
    Dev Biol; 1985 Sep; 111(1):220-31. PubMed ID: 3928419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis.
    Schonbaum CP; Perrino JJ; Mahowald AP
    Mol Biol Cell; 2000 Feb; 11(2):511-21. PubMed ID: 10679010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin and spatial distribution of maternal messenger RNA during oogenesis of an insect, Oncopeltus fasciatus.
    Capco DG; Jeffery WR
    J Cell Sci; 1979 Oct; 39():63-76. PubMed ID: 528591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical studies of mammalian oogenesis: kinetics of accumulation of total and poly(A)-containing RNA during growth of the mouse oocyte.
    Sternlicht AL; Schultz RM
    J Exp Zool; 1981 Feb; 215(2):191-200. PubMed ID: 6168731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin modifications during oogenesis in the mouse: removal of somatic subtypes of histone H1 from oocyte chromatin occurs post-natally through a post-transcriptional mechanism.
    Clarke HJ; Bustin M; Oblin C
    J Cell Sci; 1997 Feb; 110 ( Pt 4)():477-87. PubMed ID: 9067599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of swallow protein in egg chambers and embryos of Drosophila melanogaster.
    Hegdé J; Stephenson EC
    Development; 1993 Oct; 119(2):457-70. PubMed ID: 7507030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple steps in the localization of bicoid RNA to the anterior pole of the Drosophila oocyte.
    St Johnston D; Driever W; Berleth T; Richstein S; Nüsslein-Volhard C
    Development; 1989; 107 Suppl():13-9. PubMed ID: 2483989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in subcellular localization of mtlrRNA outside mitochondria in oogenesis and early embryogenesis of Drosophila melanogaster.
    Amikura R; Kobayashi S; Saito H; Okada M
    Dev Growth Differ; 1996 Oct; 38(5):489-498. PubMed ID: 37281214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoclonal antibodies against Drosophila ovaries: their reaction with ovarian and embryonic antigens.
    Maruo F; Okada M
    Cell Differ; 1987 Jan; 20(1):45-54. PubMed ID: 3102074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conserved signals and machinery for RNA transport in Drosophila oogenesis and embryogenesis.
    Bullock SL; Ish-Horowicz D
    Nature; 2001 Dec; 414(6864):611-6. PubMed ID: 11740552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a highly selective RNA transport system and its role in establishing the dorsoventral axis of the Drosophila egg.
    Cheung HK; Serano TL; Cohen RS
    Development; 1992 Mar; 114(3):653-61. PubMed ID: 1377623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial development during Drosophila oogenesis: distribution, density and in situ RNA hybridizations.
    Tourmente S; Lecher P; Degroote F; Renaud M
    Biol Cell; 1990; 68(2):119-27. PubMed ID: 1694097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytoplasmic distribution of poly(A)-containing RNA in developing Necturus maculosus oocytes with reference to annulate lamellae.
    Ganion LR
    Anat Rec; 1991 Jun; 230(2):218-24. PubMed ID: 1714257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized synthesis of specific proteins during oogenesis and early embryogenesis inDrosophila melanogaster.
    Gutzeit HO; Gehring WJ
    Wilehm Roux Arch Dev Biol; 1979 Jun; 187(2):151-165. PubMed ID: 28304927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different roles for the adjoining and structurally similar A-rich and poly(A) domains of oskar mRNA: Only the A-rich domain is required for oskar noncoding RNA function, which includes MTOC positioning.
    Kenny A; Morgan MB; Macdonald PM
    Dev Biol; 2021 Aug; 476():117-127. PubMed ID: 33798537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oocyte and embryonic cytoskeletal defects caused by mutations in the Drosophila swallow gene.
    Meng J; Stephenson EC
    Dev Genes Evol; 2002 Jun; 212(5):239-47. PubMed ID: 12070614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetrically distributed ecdysteroid-related antigens in follicles and young embryos of Drosophila melanogaster.
    Grau V; Gutzeit HO
    Rouxs Arch Dev Biol; 1990 Feb; 198(5):295-302. PubMed ID: 28305668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.