These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37281440)

  • 1. Development of Sea Urchin Embryos in Artificial Sea Water Containing Br
    Fujino Y; Mitsunaga K; Yasumasu I
    Dev Growth Differ; 1987 Nov; 29(6):599-605. PubMed ID: 37281440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory Effect of Omeprazole, a Specific Inhibitor of H
    Fujino Y; Mitsunaga K; Yasumasu I
    Dev Growth Differ; 1987 Nov; 29(6):591-597. PubMed ID: 37281587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spicule Formation-Inducing Substance in Sea Urchin Embryo: (sea urchin embryo/spicule/micromere/blastocoelic fluid).
    Kiyomoto M; Tsukahara J
    Dev Growth Differ; 1991 Oct; 33(5):443-450. PubMed ID: 37282224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism for electrosilent Ca2+ transport to cause calcification of spicules in sea urchin embryos.
    Yasumasu I; Mitsunaga K; Fujino Y
    Exp Cell Res; 1985 Jul; 159(1):80-90. PubMed ID: 4029269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probable Contribution of Protein Phosphorylation by Protein Kinase C to Spicule Formation in Sea Urchin Embryos: (sea urchin/protein kinase C/spicule formation/H-7/HA1004).
    Mitsunaga K; Shinohara S; Yasumasu I
    Dev Growth Differ; 1990 Jun; 32(3):335-342. PubMed ID: 37282312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The isotopic effects of D2O in developing sea urchin eggs.
    Sumitro SB; Sato H
    Cell Struct Funct; 1989 Feb; 14(1):95-111. PubMed ID: 2720801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insulin-Induced Outgrowth of Pseudopodial Cables from Cultured Micromere-Derived Cells Isolated from Sea Urchin Embryos at the 16 Cell Stage, with Special Reference to the Insulin-Receptor.: (sea urchin/micromere/insulin/psedopodial cable/receptor).
    Kuno SI; Nagura T; Yasumasu I
    Dev Growth Differ; 1994 Apr; 36(2):165-175. PubMed ID: 37281169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation of Sea Urchin Micromeres: Correlation between Specific Protein Synthesis and Spicule Formation: (micromere/differentiation/protein synthesis/sea urchin).
    Kitajima T
    Dev Growth Differ; 1986 May; 28(3):233-242. PubMed ID: 37281194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the Activities of H
    Mitsunaga K; Fujiwara A; Fujino Y; Yasumasu I
    Dev Growth Differ; 1989 Apr; 31(2):171-178. PubMed ID: 37281922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probable Role of Allylisothiocyanate-Sensitive H
    Mitsunaga K; Fujino Y; Yasumasu I
    Dev Growth Differ; 1987 Feb; 29(1):57-70. PubMed ID: 37281998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does Protein Phosphorylation by Protein Kinase C Support Pseudopodial Cable Growth in Cultured Micromere-Derived Cells of the Sea Urchin, Hemicentrotus pulcherrimus?: (sea urchin/protein kinase C/spicule formation/phorbol ester/H-7).
    Mitsunaga K; Shinohara S; Yasumasu I
    Dev Growth Differ; 1990 Dec; 32(6):647-655. PubMed ID: 37282270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.
    Mitsunaga K; Fujino Y; Yasumasu I
    J Biochem; 1986 Dec; 100(6):1607-15. PubMed ID: 2952640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does phosphatidylinositol 3-kinase play a role in insulin-induced outgrowth of pseudopodial cables in cultured cells derived from micromeres of sea urchin embryos?
    Kuno SI; Yasumasu I
    Dev Growth Differ; 1996 Jun; 38(3):281-289. PubMed ID: 37281666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrase activity in developing sea urchin embryos with special reference to calcification of spicules.
    Mitsunaga K; Akasaka K; Shimada H; Fujino Y; Yasumasu I; Numanoi H
    Cell Differ; 1986 Jun; 18(4):257-62. PubMed ID: 3087630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPICULE FORMATION IN VITRO BY THE DESCENDANTS OF PRECOCIOUS MICROMERE FORMED AT THE 8-CELL STAGE OF SEA URCHIN EMBRYO.
    Kitajima T; Okazaki K
    Dev Growth Differ; 1980; 22(3):265-279. PubMed ID: 37281606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Several Cell Responses to Insulin of Cultured Cells Derived from Micromeres, Isolated from Sea Urchin Embryos at the 16 Cell Stage: (Sea urchin/development/morphogenesis/insulin/micromere).
    Kuno SI; Mitsunaga-Nakatsubo K; Nagura T; Fujiwara A; Yasumasu I
    Dev Growth Differ; 1994 Aug; 36(4):397-408. PubMed ID: 37281798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton.
    Kitajima T; Urakami H
    Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serum effects on the in vitro differentiation of sea urchin micromeres.
    McCarthy RA; Spiegel M
    Exp Cell Res; 1983 Dec; 149(2):433-41. PubMed ID: 6641810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCN
    Fujiwara A; Yasumasu I
    Dev Growth Differ; 1992 Jun; 34(3):309-318. PubMed ID: 37280996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exogut Formation by the Treatment of Sea Urchin Embryos with Ascorbate and α-Ketoglutarate: (collagen synthesis/sea urchin embryo/protocollagen hydroxylation/exogut formation).
    Mizoguchi H; Yasumasu I
    Dev Growth Differ; 1982; 24(4):359-368. PubMed ID: 37281471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.