These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37281488)

  • 1. Subcortical Rotation and Specification of the Dorsoventral Axis in Newt Eggs: (newt eggs/subcortical rotation/dorsoventral axis).
    Fujisue M; Sakai M; Yamanat K
    Dev Growth Differ; 1991 Aug; 33(4):341-351. PubMed ID: 37281488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematics of gray crescent formation in Xenopus eggs: the displacement of subcortical cytoplasm relative to the egg surface.
    Vincent JP; Oster GF; Gerhart JC
    Dev Biol; 1986 Feb; 113(2):484-500. PubMed ID: 3949075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of Dorso-Ventral Axis Specification in Nuclear Transplanted Eggs of Xenopus laevis: (dorso-ventral axis/nuclear transplantation/subcortical rotation/gray crescent/Xenopus laevis).
    Satoh H; Shinagawa A
    Dev Growth Differ; 1990 Dec; 32(6):609-617. PubMed ID: 37281652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of dorsal-forming activity in precleavage embryos of the Japanese newt, Cynops pyrrhogaster: effects of deletion of vegetal cytoplasm, UV irradiation, and lithium treatment.
    Doi JY; Niigaki H; Sone K; Takabatake T; Takeshima K; Yasui K; Tosuji H; Tsukahara J; Sakai M
    Dev Biol; 2000 Jul; 223(1):154-68. PubMed ID: 10864468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ca2+ increase by the sperm factor in physiologically polyspermic newt fertilization: its signaling mechanism in egg cytoplasm and the species-specificity.
    Harada Y; Kawazoe M; Eto Y; Ueno S; Iwao Y
    Dev Biol; 2011 Mar; 351(2):266-76. PubMed ID: 21237143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XMAP230 is required for the organization of cortical microtubules and patterning of the dorsoventral axis in fertilized Xenopus eggs.
    Cha BJ; Gard DL
    Dev Biol; 1999 Jan; 205(2):275-86. PubMed ID: 9917363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF.
    Iwao Y; Elinson RP
    Dev Biol; 1990 Dec; 142(2):301-12. PubMed ID: 2257969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A step in embryonic axis specification in Xenopus laevis is simulated by cytoplasmic displacements elicited by gravity and centrifugal force.
    Black SD
    Adv Space Res; 1989; 9(11):159-68. PubMed ID: 11537329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M; Kobayakawa Y; Yamana K
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation.
    Larabell CA; Rowning BA; Wells J; Wu M; Gerhart JC
    Development; 1996 Apr; 122(4):1281-9. PubMed ID: 8620855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The egg nucleus regulates the behavior of sperm nuclei as well as cycling of MPF in physiologically polyspermic newt eggs.
    Iwao Y; Sakamoto N; Takahara K; Yamashita M; Nagahama Y
    Dev Biol; 1993 Nov; 160(1):15-27. PubMed ID: 8224532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-Induced Reversal of Dorsal-Ventral Polarity in Xenopus Eggs: (Xenopus eggs/heat-treatment/D-V axis).
    Sakai M
    Dev Growth Differ; 1990 Oct; 32(5):497-504. PubMed ID: 37282315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gavity and Microtubules in Dorsoventral Polarization of The Xenopus Egg: (Microtubules/Gravity/Dorsoventral polarity/Xenopus laevis/Egg).
    Zisckind N; Elinson RP
    Dev Growth Differ; 1990 Dec; 32(6):575-581. PubMed ID: 37281273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The outermost layer of egg-jelly is crucial to successful fertilization in the newt, Cynops pyrrhogaster.
    Takahashi S; Nakazawa H; Watanabe A; Onitake K
    J Exp Zool A Comp Exp Biol; 2006 Dec; 305(12):1010-7. PubMed ID: 17068800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcortical rotation in Xenopus eggs: a preliminary study of its mechanochemical basis.
    Vincent JP; Scharf SR; Gerhart JC
    Cell Motil Cytoskeleton; 1987; 8(2):143-54. PubMed ID: 3690686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep cytoplasmic rearrangements in axis-respecified Xenopus embryos.
    Denegre JM; Danilchik MV
    Dev Biol; 1993 Nov; 160(1):157-64. PubMed ID: 8224533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a functional role of the cytoskeleton in determination of the dorsoventral axis in Xenopus laevis eggs.
    Ubbels GA; Hara K; Koster CH; Kirschner MW
    J Embryol Exp Morphol; 1983 Oct; 77():15-37. PubMed ID: 6689175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage Noise Changes during Monospermic and Polyspermic Fertilization of Mature Eggs of the Anuran, Rana temporaria: (anuran egg/electrical membrane properties/fertilization/polyspermy/voltage noise).
    Charbonneau M; Moreau M; Picheral B; Guerrier P; Vilain JP
    Dev Growth Differ; 1983; 25(5):485-494. PubMed ID: 37280954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.