BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37281593)

  • 1. Regionalized Cell Division during Sea Urchin Gastrulation Contributes to Archenteron Formation and Is Correlated with the Establishment of Larval Symmetry: (sea urchin/gastrulation/cell division/autoradiography).
    Nislow C; Morrill JB
    Dev Growth Differ; 1988 Oct; 30(5):483-499. PubMed ID: 37281593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
    Martik ML; McClay DR
    Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    Kominami T; Takata H
    Dev Growth Differ; 2004 Aug; 46(4):309-26. PubMed ID: 15367199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN; Dalamagas DG; Kingsley PD; Ettensohn CA
    Mech Dev; 1996 Nov; 60(1):3-12. PubMed ID: 9025057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Involution during Sea Urchin Gastrulation Using Two-Photon Excited Photorelease and Confocal Microscopy.
    Piston DW; Summers RG; Knobel SM; Morrill JB
    Microsc Microanal; 1998 Jul; 4(4):404-414. PubMed ID: 9882716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus.
    Martins GG; Summers RG; Morrill JB
    Dev Biol; 1998 Jun; 198(2):330-42. PubMed ID: 9659937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late specification of Veg1 lineages to endodermal fate in the sea urchin embryo.
    Ransick A; Davidson EH
    Dev Biol; 1998 Mar; 195(1):38-48. PubMed ID: 9520322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron.
    Long JT; Irwin L; Enomoto AC; Grow Z; Ranck J; Peeler MT
    Genesis; 2015 Dec; 53(12):762-9. PubMed ID: 26297876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local shifts in position and polarized motility drive cell rearrangement during sea urchin gastrulation.
    Hardin J
    Dev Biol; 1989 Dec; 136(2):430-45. PubMed ID: 2583371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial expression of a forkhead homologue in the sea urchin embryo.
    Harada Y; Akasaka K; Shimada H; Peterson KJ; Davidson EH; Satoh N
    Mech Dev; 1996 Dec; 60(2):163-73. PubMed ID: 9025069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The origin of pigment cells in embryos of the sea urchin Strongylocentrotus purpuratus.
    Gibson AW; Burke RD
    Dev Biol; 1985 Feb; 107(2):414-9. PubMed ID: 3972163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An N-linked carbohydrate-containing extracellular matrix determinant plays a key role in sea urchin gastrulation.
    Ingersoll EP; Ettensohn CA
    Dev Biol; 1994 Jun; 163(2):351-66. PubMed ID: 7515360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells.
    Nakajima Y; Burke RD
    Dev Biol; 1996 Nov; 179(2):436-46. PubMed ID: 8903358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Archenteron elongation in the sea urchin embryo is a microtubule-independent process.
    Hardin JD
    Dev Biol; 1987 May; 121(1):253-62. PubMed ID: 3552789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei.
    Takata H; Kominami T
    Dev Growth Differ; 2003; 45(5-6):473-83. PubMed ID: 14706072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pattern formation during gastrulation in the sea urchin embryo.
    McClay DR; Armstrong NA; Hardin J
    Dev Suppl; 1992; ():33-41. PubMed ID: 1299366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.