These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37281649)

  • 1. Development of Microtubule-Dependence of the Chromosome Cycle at the Midblastula Transition in Xenopus laevis Embryos: (Xenopus/cell cycle/chromosomes/microtubutes/midblastula transition).
    Clute P; Masui Y
    Dev Growth Differ; 1992 Feb; 34(1):27-36. PubMed ID: 37281649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos.
    Clute P; Masui Y
    Dev Biol; 1995 Oct; 171(2):273-85. PubMed ID: 7556912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in Xenopus laevis.
    Wang P; Hayden S; Masui Y
    J Exp Zool; 2000 Jul; 287(2):128-44. PubMed ID: 10900432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule dependence of chromosome cycles in Xenopus laevis blastomeres under the influence of a DNA synthesis inhibitor, aphidicolin.
    Clute P; Masui Y
    Dev Biol; 1997 May; 185(1):1-13. PubMed ID: 9169045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle transition in early embryonic development of Xenopus laevis.
    Masui Y; Wang P
    Biol Cell; 1998 Nov; 90(8):537-48. PubMed ID: 10068998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for cyclin E/Cdk2 in the timing of the midblastula transition in Xenopus embryos.
    Hartley RS; Sible JC; Lewellyn AL; Maller JL
    Dev Biol; 1997 Aug; 188(2):312-21. PubMed ID: 9268577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marked Alteration at Midblastula Transition in the Effect of Lithium on Formation of the Larval Body Pattern of Xenopus laevis: (midblastula transition/LiCl/pattern formation/half-egg fragment/Xenopus laevis).
    Yamaguchi Y; Shinagawa A
    Dev Growth Differ; 1989 Dec; 31(6):531-541. PubMed ID: 37281688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered expression of Chk1 disrupts cell cycle remodeling at the midblastula transition in Xenopus laevis embryos.
    Petrus MJ; Wilhelm DE; Murakami M; Kappas NC; Carter AD; Wroble BN; Sible JC
    Cell Cycle; 2004 Feb; 3(2):212-7. PubMed ID: 14712091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus.
    Anderson JA; Lewellyn AL; Maller JL
    Mol Biol Cell; 1997 Jul; 8(7):1195-206. PubMed ID: 9243501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitotic spindle disruption in human preimplantation embryos activates the spindle assembly checkpoint but not apoptosis until Day 5 of development.
    Jacobs K; Van de Velde H; De Paepe C; Sermon K; Spits C
    Mol Hum Reprod; 2017 May; 23(5):321-329. PubMed ID: 28159965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitotic chromosome size scaling in Xenopus.
    Kieserman EK; Heald R
    Cell Cycle; 2011 Nov; 10(22):3863-70. PubMed ID: 22071695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of endoplasmic reticulum in rapidly dividing cells of early Xenopus embryos.
    Manuel Dominguez J; Paiement J
    Am J Anat; 1989 Sep; 186(1):99-113. PubMed ID: 2782291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage.
    Newport J; Kirschner M
    Cell; 1982 Oct; 30(3):675-86. PubMed ID: 6183003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos.
    Sible JC; Anderson JA; Lewellyn AL; Maller JL
    Dev Biol; 1997 Sep; 189(2):335-46. PubMed ID: 9299125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell cycle analysis and synchronization of the Xenopus laevis XL2 cell line: study of the kinesin related protein XlEg5.
    Uzbekov R; Prigent C; Arlot-Bonnemains Y
    Microsc Res Tech; 1999 Apr; 45(1):31-42. PubMed ID: 10206152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Both Nuclear Size and DNA Amount Contribute to Midblastula Transition Timing in Xenopus laevis.
    Jevtić P; Levy DL
    Sci Rep; 2017 Aug; 7(1):7908. PubMed ID: 28801588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chk1 is activated at the midblastula transition in Xenopus laevis embryos independently of DNA content and the cyclin E/Cdk2 developmental timer.
    Adjerid N; Wroble BN; Sible JC
    Cell Cycle; 2008 Apr; 7(8):1112-6. PubMed ID: 18414041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Spindle Assembly Checkpoint Functions during Early Development in Non-Chordate Embryos.
    Chenevert J; Roca M; Besnardeau L; Ruggiero A; Nabi D; McDougall A; Copley RR; Christians E; Castagnetti S
    Cells; 2020 Apr; 9(5):. PubMed ID: 32354040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs.
    Ferrell JE; Wu M; Gerhart JC; Martin GS
    Mol Cell Biol; 1991 Apr; 11(4):1965-71. PubMed ID: 2005892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mimosine differentially inhibits DNA replication and cell cycle progression in somatic cells compared to embryonic cells of Xenopus laevis.
    Wang Y; Zhao J; Clapper J; Martin LD; Du C; DeVore ER; Harkins K; Dobbs DL; Benbow RM
    Exp Cell Res; 1995 Mar; 217(1):84-91. PubMed ID: 7867725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.