These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37281841)

  • 1. Development of irradiated tunicate buds: Is cell division cycle required for morphallaxis?
    Kawamura K; Hashimoto K; Nakauchi M
    Dev Growth Differ; 1995 Oct; 37(5):487-496. PubMed ID: 37281841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transdifferentiation of pigmented multipotent epithelium during morphallactic development of budding tunicates.
    Kawamura K; Fujiwara S
    Int J Dev Biol; 1994 Jun; 38(2):369-77. PubMed ID: 7981047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and molecular characterization of transdifferentiation in the process of morphallaxis of budding tunicates.
    Kawamura K; Fujiwara S
    Semin Cell Biol; 1995 Jun; 6(3):117-26. PubMed ID: 7548850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ascidian Budding as a Transdifferentiation-Like System: Multipotent Epithelium is not Undifferentiated: (ascidian budding/multipotent stem cells/atrial epithelium/transdifferentiation/monoclonal antidody).
    Fujiwara S; Kawamura K
    Dev Growth Differ; 1992 Aug; 34(4):463-472. PubMed ID: 37281003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagic dedifferentiation induced by cooperation between TOR inhibitor and retinoic acid signals in budding tunicates.
    Kawamura K; Yoshida T; Sekida S
    Dev Biol; 2018 Jan; 433(2):384-393. PubMed ID: 29291982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and function of myc during asexual reproduction of the budding ascidian Polyandrocarpa misakiensis.
    Fujiwara S; Isozaki T; Mori K; Kawamura K
    Dev Growth Differ; 2011 Dec; 53(9):1004-14. PubMed ID: 22168620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Establishment of cell lines from multipotent epithelial sheet in the budding tunicate, Polyandrocarpa misakiensis.
    Kawamura K; Fujiwara S
    Cell Struct Funct; 1995 Feb; 20(1):97-106. PubMed ID: 7796472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advantage or Disadvantage: Is Asexual Reproduction Beneficial to Survival of the Tunicate, Polyandrocarpa misakiensis.
    Kawamura K; Fujiwara S
    Zoolog Sci; 2000 Apr; 17(3):281-91. PubMed ID: 18494580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinoic Acid can Induce a Secondary Axis in Developing Buds of a Colonial Ascidian, Polyandrocarpa misakiensis: (retinoic acid/budding/axial induction/morphogenesis/ascidians).
    Hara K; Fujiwara S; Kawamura K
    Dev Growth Differ; 1992 Aug; 34(4):437-445. PubMed ID: 37281367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinoid X receptor-mediated transdifferentiation cascade in budding tunicates.
    Kawamura K; Shiohara M; Kanda M; Fujiwara S
    Dev Biol; 2013 Dec; 384(2):343-55. PubMed ID: 24120377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates.
    Kawamura K; Sugino Y; Sunanaga T; Fujiwara S
    Dev Growth Differ; 2008 Jan; 50(1):1-11. PubMed ID: 17986261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial DNA methyltransferase-1 regulates cell survival, growth and maturation in developing prostatic buds.
    Joseph DB; Chandrashekar AS; Abler LL; Chu LF; Thomson JA; Vezina CM
    Dev Biol; 2019 Mar; 447(2):157-169. PubMed ID: 30659795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunicate cytostatic factor TC14-3 induces a polycomb group gene and histone modification through Ca(2+) binding and protein dimerization.
    Kawamura K; Takakura K; Mori D; Ikeda K; Nakamura A; Suzuki T
    BMC Cell Biol; 2012 Feb; 13():3. PubMed ID: 22296827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphogenetic tissue interactions during posterior commitment in palleal buds of the polystyelid ascidian, Polyandrocarpa misakiensis.
    Kawamura K
    Dev Biol; 1984 Dec; 106(2):379-88. PubMed ID: 6500179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell adhesion in the process of asexual reproduction of tunicates.
    Kawamura K; Sugino YM
    Microsc Res Tech; 1999 Feb; 44(4):269-78. PubMed ID: 10098927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone methylation codes involved in stemness, multipotency, and senescence in budding tunicates.
    Kawamura K; Kinoshita M; Sekida S; Sunanaga T
    Mech Ageing Dev; 2015 Jan; 145():1-12. PubMed ID: 25543066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel C-type lectin regulating cell growth, cell adhesion and cell differentiation of the multipotent epithelium in budding tunicates.
    Matsumoto J; Nakamoto C; Fujiwara S; Yubisui T; Kawamura K
    Development; 2001 Sep; 128(17):3339-47. PubMed ID: 11546750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates.
    Tatzuke Y; Sunanaga T; Fujiwara S; Kawamura K
    Dev Biol; 2012 Aug; 368(2):393-403. PubMed ID: 22698545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular collaborations between serpins and trefoil factor promote endodermal cell growth and gastrointestinal differentiation in budding tunicates.
    Kawamura K; Kariya Y; Ono Y; Muramoto A; Ohta K; Fujiwara S
    Dev Growth Differ; 2006 Jun; 48(5):309-22. PubMed ID: 16759281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of vasa homolog in germline recruitment from coelomic stem cells in budding tunicates.
    Sunanaga T; Watanabe A; Kawamura K
    Dev Genes Evol; 2007 Jan; 217(1):1-11. PubMed ID: 17043850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.