These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 37282103)

  • 1. Cell Culture of Spermatogenic Cells from Amphibians: (cell culture/meiosis/spermiogenesis/Cynops pyrrhogaster/Xenopus laevis).
    Abé SI
    Dev Growth Differ; 1988 Jun; 30(3):209-218. PubMed ID: 37282103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Meiosis of primary spermatocytes and early spermiogenesis in the resultant spermatids in newt, Cynops pyrrhogaster in vitro.
    Abe SI
    Differentiation; 1981; 20(1):65-70. PubMed ID: 7308609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How is the flagellar length of mature sperm determined? II. Comparison of tubulin synthesis in spermatids between newt and Xenopus in vitro.
    Uno S; Abé S
    Exp Cell Res; 1990 Feb; 186(2):279-87. PubMed ID: 2298244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How is the flagellar length of mature sperm determined? I. Comparison of flagellar growth in spermatids between newt and Xenopus in vitro.
    Uno S; Abé S
    Exp Cell Res; 1988 May; 176(1):194-7. PubMed ID: 3371423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in microtubule structures during the first cell cycle of physiologically polyspermic newt eggs.
    Iwao Y; Yasumitsu K; Narihira M; Jiang J; Nagahama Y
    Mol Reprod Dev; 1997 Jun; 47(2):210-21. PubMed ID: 9136124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of the Germinal Vesicle Material during Progesterone-Induced Oocyte Maturation in Xenopus and in Cynops: (germinal vesicle material/oocyte maturation/Xenopus laevis/Cynops pyrrhogaster).
    Imoh H; Miyazaki Y
    Dev Growth Differ; 1984; 26(2):157-165. PubMed ID: 37280871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning of cDNA for newt WT1 and the differential expression during spermatogenesis of the Japanese newt, Cynops pyrrhogaster.
    Nakayama Y; Yamamoto T; Matsuda Y; Abé SI
    Dev Growth Differ; 1998 Dec; 40(6):599-608. PubMed ID: 9865970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative peptidomics of the endocrine pancreas: islet hormones from the clawed frog Xenopus laevis and the red-bellied newt Cynops pyrrhogaster.
    Conlon JM; Kim JB; Johansson A; Kikuyama S
    J Endocrinol; 2002 Dec; 175(3):769-77. PubMed ID: 12475387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico identification of the genes for sperm-egg interaction in the internal fertilization of the newt Cynops pyrrhogaster.
    Watanabe A; Takayama-Watanabe E
    Int J Dev Biol; 2014; 58(10-12):873-9. PubMed ID: 26154327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential expression of annexin V during spermatogenesis in the newt Cynops pyrrhogaster.
    Yamamoto T; Hikino T; Abé S
    Dev Genes Evol; 1996 Jun; 206(1):64-71. PubMed ID: 24173398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food habit of the juvenile of the Japanese newt Cynops pyrrhogaster.
    Matsui K; Mochida K; Nakamura M
    Zoolog Sci; 2003 Jul; 20(7):855-9. PubMed ID: 12867714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal expression of a DAZ-like gene in the Japanese newt Cynops pyrrhogaster that has no germ plasm.
    Tamori Y; Iwai T; Mita K; Wakahara M
    Dev Genes Evol; 2004 Dec; 214(12):615-27. PubMed ID: 15490230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a sperm factor for egg activation at fertilization of the newt Cynops pyrrhogaster.
    Harada Y; Matsumoto T; Hirahara S; Nakashima A; Ueno S; Oda S; Miyazaki S; Iwao Y
    Dev Biol; 2007 Jun; 306(2):797-808. PubMed ID: 17499700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormal spermatogenesis at low temperatures in the Japanese red-bellied newt, Cynops pyrrhogaster: possible biological significance of the cessation of spermatocytogenesis.
    Yazawa T; Nakayama Y; Fujimoto K; Matsuda Y; Abe K; Kitano T; Abé S; Yamamoto T
    Mol Reprod Dev; 2003 Sep; 66(1):60-6. PubMed ID: 12874800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal alteration of dose-dependent response to activin in newt animal-cap explants.
    Sone K; Takeshima K; Takahashi TC; Takabatake T
    Dev Genes Evol; 1997 Aug; 207(3):147-155. PubMed ID: 27747412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin and chromosomal fine structure in spermatogenesis of some species of amphibians.
    Gavrila L; Mircea L
    Zygote; 2001 Aug; 9(3):183-92. PubMed ID: 11508737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcortical Rotation and Specification of the Dorsoventral Axis in Newt Eggs: (newt eggs/subcortical rotation/dorsoventral axis).
    Fujisue M; Sakai M; Yamanat K
    Dev Growth Differ; 1991 Aug; 33(4):341-351. PubMed ID: 37281488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF.
    Iwao Y; Elinson RP
    Dev Biol; 1990 Dec; 142(2):301-12. PubMed ID: 2257969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences of Extracellular Cues and Ca
    Sato T; Arimura T; Murata K; Kawamura M; Obama W; Suzuki M; Nakauchi Y; Tominaga A; Morita M; Hiraoka K; Takayama-Watanabe E; Watanabe A
    Zoolog Sci; 2021 Aug; 38(4):343-351. PubMed ID: 34342955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative studies on the electric nature of amphibian gonadotropin.
    Tanaka S; Park MK; Takikawa H; Wakabayashi K
    Gen Comp Endocrinol; 1985 Jul; 59(1):110-9. PubMed ID: 3874809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.