BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37282153)

  • 21. Partial exogastrulation due to apical-basal polarity of F-actin distribution disruption in sea urchin embryo by omeprazole.
    Watanabe K; Yasui Y; Kurose Y; Fujii M; Yamamoto T; Sakamoto N; Awazu A
    Genes Cells; 2022 Jun; 27(6):392-408. PubMed ID: 35347809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Partial Purification of the Sperm-binding Factor from the Egg of the Sea Urchin, Anthocidaris Crassispina, Followed by an Immunological Method: (sperm-binding factor/sea urchin egg/Fab fragments/neutralizing activity/purification).
    Yoshida M; Aketa K
    Dev Growth Differ; 1982; 24(1):55-63. PubMed ID: 37281327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of specialized microvilli and the fertilization envelope in the spatial positioning of blastomeres in early development of embryos of the starfish Astropecten scoparius.
    Matsunaga M; Uemura I; Tamura M; Nemoto S
    Biol Bull; 2002 Jun; 202(3):213-22. PubMed ID: 12086992
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 'Nectosome': a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii.
    Kato KH; Abe T; Nakashima S; Matranga V; Zito F; Yokota Y
    Dev Growth Differ; 2004 Jun; 46(3):239-47. PubMed ID: 15206955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GLYCOGEN METABOLISM AND CHANGES IN THE ACTIVITIES OF PHOSPHORYLASE, PHOSPHOFRUCTOKINASE AND PYRUVATE KINASE DURING DEVELOPMENT OF SEA URCHIN EGGS.
    Okabayashi K; Nakano E
    Dev Growth Differ; 1980; 22(2):187-194. PubMed ID: 37281642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PRODUCTION AND UTILIZATION OF GLUCOSE 1-PHOSPHATE IN THE EGGS OF THE SEA URCHIN ANTHOCIDARIS CRASSISPINA.
    Tazawa E; Hino A; Yasumasu I
    Dev Growth Differ; 1977; 19(4):289-297. PubMed ID: 37281000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 225 K dalton glycoprotein is the active core structure of the sperm-binding factor of the sea urchin, Anthocidaris crassispina.
    Yoshida M; Aketa K
    Exp Cell Res; 1983 Oct; 148(1):243-8. PubMed ID: 6354734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CHANGE IN THE GLYCOGEN CONTENT OF SEA URCHIN EGGS DURING EARLY DEVELOPMENT.
    Hino A; Yasumasu I
    Dev Growth Differ; 1979; 21(3):229-236. PubMed ID: 37281484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developmental changes in localization of the main ganglioside during sea urchin embryogenesis.
    Nezuo M; Shogomori H; Hoshi M; Yamamoto T; Teshima T; Shiba T; Chiba K
    Glycobiology; 2000 Nov; 10(11):1243-7. PubMed ID: 11087717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo.
    Henson JH; Begg DA; Beaulieu SM; Fishkind DJ; Bonder EM; Terasaki M; Lebeche D; Kaminer B
    J Cell Biol; 1989 Jul; 109(1):149-61. PubMed ID: 2663877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunocytochemical evidence for the presence of two domains in the plasma membrane of sea urchin blastomeres.
    Yazaki I; Uemura I
    Rouxs Arch Dev Biol; 1989 Oct; 198(3):179-184. PubMed ID: 28305720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elongated Microvilli on Vegetal Pole Cells in Sea Urchin Embryos: (microvilli/sea urchin/vegetal pole/primary mesenchyme cell).
    Amemiya S
    Dev Growth Differ; 1986 Nov; 28(6):575-582. PubMed ID: 37282125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the tricarboxylic acid cycle in sea urchin eggs and embryos.
    Mita M; Yasumasu I
    J Exp Zool; 1983 Oct; 228(1):71-7. PubMed ID: 6663254
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcripts containing the sea urchin retroposon family 1 (SURF1) in embryos of the sea urchin Anthocidaris crassispina.
    Yamaguchi M; Ohba Y
    Zoolog Sci; 1997 Dec; 14(6):947-52. PubMed ID: 9520637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytoplasm of sea urchin unfertilized eggs contains a nucleosome remodeling activity.
    Medina R; Gutiérrez J; Puchi M; Imschenetzky M; Montecino M
    J Cell Biochem; 2001; 83(4):554-62. PubMed ID: 11746499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Microtubular Poisons on Cleavage Furrow Formation and Induction of Furrow-like Dent in Amphibian Eggs.
    Sawai T
    Dev Growth Differ; 1992 Dec; 34(6):669-675. PubMed ID: 37281275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Change in the Triglyceride Level in Sea Urchin Eggs and Embryos During Early Development: (sea urchin egg/triglycerides/lipid metabolism/early development).
    Yasumasu I; Hino A; Suzuki A; Mita M
    Dev Growth Differ; 1984; 26(6):525-532. PubMed ID: 37282191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and redistribution of pigment granules in the development of sea urchin embryos.
    Tanaka Y
    Wilehm Roux Arch Dev Biol; 1981 Sep; 190(5):267-273. PubMed ID: 28305346
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunochemical Analysis of Arylsulfatase Accumulation in Sea Urchin Embryos: (extracellular matrix/arylsulfatase/sea urchin embryo/tissue-specific gene products/sea urchin embryo/in situ hybridization).
    Yang Q; Kingsley PD; Kozlowski DJ; Angerer RC; Angerer LM
    Dev Growth Differ; 1993 Apr; 35(2):139-151. PubMed ID: 37280843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subcellular localization of sea urchin egg spectrin: evidence for assembly of the membrane-skeleton on unique classes of vesicles in eggs and embryos.
    Fishkind DJ; Bonder EM; Begg DA
    Dev Biol; 1990 Dec; 142(2):439-52. PubMed ID: 2257977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.