These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 37282159)
1. Cathepsin D Activity in the Vitellogenesis of Xenopus laevis: (Xenopus/oocyte/vitellogenin cleavage/cathepsin D/immunohistochemisty). Yoshizaki N; Yonezawa S Dev Growth Differ; 1994 Jun; 36(3):299-306. PubMed ID: 37282159 [TBL] [Abstract][Full Text] [Related]
2. Salt concentration-dependency of vitellogenin processing by cathepsin D in Xenopus laevis. Yoshizaki N; Yonezawa S Dev Growth Differ; 1996 Oct; 38(5):549-556. PubMed ID: 37282192 [TBL] [Abstract][Full Text] [Related]
3. Localization and Characterization of Lectins in Yolk Platelets of Xenopus Oocytes: (Xenopus oocyte/yolk lectin/endocytosis/immunohistochemistry/biochemistry). Yoshizaki N Dev Growth Differ; 1990 Jun; 32(3):343-352. PubMed ID: 37281845 [TBL] [Abstract][Full Text] [Related]
4. Vitellogenesis-related ovary cathepsin D from Xenopus laevis: purification and properties in comparison with liver cathepsin D. Nakamura K; Yonezawa S; Yoshizaki N Comp Biochem Physiol B Biochem Mol Biol; 1996 Apr; 113(4):835-40. PubMed ID: 8925451 [TBL] [Abstract][Full Text] [Related]
5. Zinc uptake and distribution in Xenopus laevis oocytes and embryos. Falchuk KH; Montorzi M; Vallee BL Biochemistry; 1995 Dec; 34(50):16524-31. PubMed ID: 8845382 [TBL] [Abstract][Full Text] [Related]
6. In Vivo Study of Vitellogenin-Gold Transport in the Ovarian Follicle and Oocyte of Xenopus laevis: (Xenopus laevis/vitellogenesis/in vivo study/vitellogenin-gold/electron microscopy). Yoshizaki N Dev Growth Differ; 1992 Oct; 34(5):517-527. PubMed ID: 37280961 [TBL] [Abstract][Full Text] [Related]
7. Cysteine proteinase plays a key role for the initiation of yolk digestion during development of Xenopus laevis. Yoshizaki N; Yonezawa S Dev Growth Differ; 1998 Dec; 40(6):659-67. PubMed ID: 9865976 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of the animal-vegetal axis in Xenopus laevis oocytes. I. Polarized intracellular translocation of platelets establishes the yolk gradient. Danilchik MV; Gerhart JC Dev Biol; 1987 Jul; 122(1):101-12. PubMed ID: 3596006 [TBL] [Abstract][Full Text] [Related]
9. Translation of Xenopus liver messenger RNA in Xenopus oocytes: vitellogenin synthesis and conversion to yolk platelet proteins. Berridge MV; Lane CD Cell; 1976 Jun; 8(2):283-97. PubMed ID: 986877 [TBL] [Abstract][Full Text] [Related]
10. Vitellogenesis in Xenopus laevis and chicken: cognate ligands and oocyte receptors. The binding site for vitellogenin is located on lipovitellin I. Stifani S; Nimpf J; Schneider WJ J Biol Chem; 1990 Jan; 265(2):882-8. PubMed ID: 2153117 [TBL] [Abstract][Full Text] [Related]
11. Ferromagnetic isolation of endosomes involved in vitellogenin transfer into Xenopus oocytes. Richter HP; Bauer A Eur J Cell Biol; 1990 Feb; 51(1):53-63. PubMed ID: 1970297 [TBL] [Abstract][Full Text] [Related]
12. The intracellular fate of vitellogenin in Xenopus oocytes is determined by its extracellular concentration during endocytosis. Wall DA; Patel S J Biol Chem; 1987 Oct; 262(30):14779-89. PubMed ID: 3667603 [TBL] [Abstract][Full Text] [Related]
13. Yolk organelles and their membranes during vitellogenesis ofXenopus oocytes. Richter H- Rouxs Arch Dev Biol; 1989 Jun; 198(2):92-102. PubMed ID: 28305877 [TBL] [Abstract][Full Text] [Related]
14. Specific proteolysis regulates fusion between endocytic compartments in Xenopus oocytes. Opresko LK; Karpf RA Cell; 1987 Nov; 51(4):557-68. PubMed ID: 3315227 [TBL] [Abstract][Full Text] [Related]
15. Changes in yolk platelet pH during Xenopus laevis development correlate with yolk utilization. A quantitative confocal microscopy study. Fagotto F; Maxfield FR J Cell Sci; 1994 Dec; 107 ( Pt 12)():3325-37. PubMed ID: 7706389 [TBL] [Abstract][Full Text] [Related]
16. Precursor-product relationship between chicken vitellogenin and the yolk proteins: the 40 kDa yolk plasma glycoprotein is derived from the C-terminal cysteine-rich domain of vitellogenin II. Yamamura J; Adachi T; Aoki N; Nakajima H; Nakamura R; Matsuda T Biochim Biophys Acta; 1995 Jun; 1244(2-3):384-94. PubMed ID: 7599159 [TBL] [Abstract][Full Text] [Related]
17. Oogenesis in Xenopus laevis (Daudin). VI. The route of injected tracer transport in the follicle and developing oocyte. Dumont JN J Exp Zool; 1978 May; 204(2):193-217. PubMed ID: 641487 [TBL] [Abstract][Full Text] [Related]
18. Yolk formation and degradation during oocyte maturation in seabream Sparus aurata: involvement of two lysosomal proteinases. Carnevali O; Carletta R; Cambi A; Vita A; Bromage N Biol Reprod; 1999 Jan; 60(1):140-6. PubMed ID: 9858498 [TBL] [Abstract][Full Text] [Related]
19. Differential postendocytotic compartmentation in Xenopus oocytes is mediated by a specifically bound ligand. Opresko L; Wiley HS; Wallace RA Cell; 1980 Nov; 22(1 Pt 1):47-57. PubMed ID: 7428040 [TBL] [Abstract][Full Text] [Related]
20. Female reproductive system of the sugarcane spittlebug Mahanarva fimbriolata (Auchenorrhyncha): vitellogenesis dynamics and protein quantification. Caperucci D; Camargo Mathias MI Micron; 2007; 38(1):65-73. PubMed ID: 16973368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]