These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37282224)

  • 1. Spicule Formation-Inducing Substance in Sea Urchin Embryo: (sea urchin embryo/spicule/micromere/blastocoelic fluid).
    Kiyomoto M; Tsukahara J
    Dev Growth Differ; 1991 Oct; 33(5):443-450. PubMed ID: 37282224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPICULE FORMATION IN VITRO BY THE DESCENDANTS OF PRECOCIOUS MICROMERE FORMED AT THE 8-CELL STAGE OF SEA URCHIN EMBRYO.
    Kitajima T; Okazaki K
    Dev Growth Differ; 1980; 22(3):265-279. PubMed ID: 37281606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of Sea Urchin Micromeres: Correlation between Specific Protein Synthesis and Spicule Formation: (micromere/differentiation/protein synthesis/sea urchin).
    Kitajima T
    Dev Growth Differ; 1986 May; 28(3):233-242. PubMed ID: 37281194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromere Differentiation in the Sea Urchin Embryo: Two-Dimensional Gel Electrophoretic Analysis of Newly Synthesized Proteins: (sea urchin/micromere/protein synthesis/differentiation).
    Matsuda R; Kitajima T; Ohinata H; Katoh Y; Higashinakagawa T
    Dev Growth Differ; 1988 Feb; 30(1):25-33. PubMed ID: 37280888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insulin-Induced Outgrowth of Pseudopodial Cables from Cultured Micromere-Derived Cells Isolated from Sea Urchin Embryos at the 16 Cell Stage, with Special Reference to the Insulin-Receptor.: (sea urchin/micromere/insulin/psedopodial cable/receptor).
    Kuno SI; Nagura T; Yasumasu I
    Dev Growth Differ; 1994 Apr; 36(2):165-175. PubMed ID: 37281169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of competence in cultured sea urchin micromeres.
    Page L; Benson S
    Exp Cell Res; 1992 Dec; 203(2):305-11. PubMed ID: 1459196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probable Contribution of Protein Phosphorylation by Protein Kinase C to Spicule Formation in Sea Urchin Embryos: (sea urchin/protein kinase C/spicule formation/H-7/HA1004).
    Mitsunaga K; Shinohara S; Yasumasu I
    Dev Growth Differ; 1990 Jun; 32(3):335-342. PubMed ID: 37282312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory Effect of Omeprazole, a Specific Inhibitor of H
    Fujino Y; Mitsunaga K; Yasumasu I
    Dev Growth Differ; 1987 Nov; 29(6):591-597. PubMed ID: 37281587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromere Differentiation in the Sea Urchin Embryo: Expression of Primary Mesenchyme Cell Specific Antigen during Development: (sea urchin/micromere/primary mesenchyme cell/monoclonal antibody).
    Shimizu K; Noro N; Matsuda R
    Dev Growth Differ; 1988 Feb; 30(1):35-47. PubMed ID: 37282097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Sea Urchin Embryos in Artificial Sea Water Containing Br
    Fujino Y; Mitsunaga K; Yasumasu I
    Dev Growth Differ; 1987 Nov; 29(6):599-605. PubMed ID: 37281440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the Activities of H
    Mitsunaga K; Fujiwara A; Fujino Y; Yasumasu I
    Dev Growth Differ; 1989 Apr; 31(2):171-178. PubMed ID: 37281922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in the activity of Cl-,HCO3(-)-ATPase in microsome fraction during early development of the sea urchin, Hemicentrotus pulcherrimus.
    Mitsunaga K; Fujino Y; Yasumasu I
    J Biochem; 1986 Dec; 100(6):1607-15. PubMed ID: 2952640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin of skeleton forming cells in the sea urchin embryo.
    Urben S; Nislow C; Spiegel M
    Rouxs Arch Dev Biol; 1988 Jan; 197(8):447-456. PubMed ID: 28305470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serum effects on the in vitro differentiation of sea urchin micromeres.
    McCarthy RA; Spiegel M
    Exp Cell Res; 1983 Dec; 149(2):433-41. PubMed ID: 6641810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of spicule formation and calcium uptake by monoclonal antibodies to fibronectin-binding acid polysaccharide in cultured sea urchin embryonic cells.
    Iwata M; Nakano E
    Cell Differ; 1985 Jul; 17(1):57-62. PubMed ID: 4028164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric inhibition of spicule formation in sea urchin embryos with low concentrations of gadolinium ion.
    Saitoh M; Kuroda R; Muranaka Y; Uto N; Murai J; Kuroda H
    Dev Growth Differ; 2010 Dec; 52(9):735-46. PubMed ID: 21158753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micromere Differentiation in the Sea Urchin Embryo: Immunochemical Characterization of Primary Mesenchyme Cell-Specific Antigen and Its Biological Roles: (sea urchin/primary mesenchyme cell/monoclonal antibody/spicule formation/cell migration).
    Shimizu-Nishikawa K; Katow H; Matsuda R
    Dev Growth Differ; 1990 Dec; 32(6):629-636. PubMed ID: 37281449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Several Cell Responses to Insulin of Cultured Cells Derived from Micromeres, Isolated from Sea Urchin Embryos at the 16 Cell Stage: (Sea urchin/development/morphogenesis/insulin/micromere).
    Kuno SI; Mitsunaga-Nakatsubo K; Nagura T; Fujiwara A; Yasumasu I
    Dev Growth Differ; 1994 Aug; 36(4):397-408. PubMed ID: 37281798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probable Role of Allylisothiocyanate-Sensitive H
    Mitsunaga K; Fujino Y; Yasumasu I
    Dev Growth Differ; 1987 Feb; 29(1):57-70. PubMed ID: 37281998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.