BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 37282267)

  • 1. A cyto-embryological study of gastrulation in the sand dollar, Scaphechinus mirabilis.
    Kominami T; Masui M
    Dev Growth Differ; 1996 Apr; 38(2):129-139. PubMed ID: 37282267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectoderm exerts the driving force for gastrulation in the sand dollar Scaphechinus mirabilis.
    Takata H; Kominami T
    Dev Growth Differ; 2001 Jun; 43(3):265-74. PubMed ID: 11422292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular basis of gastrulation in the sand dollar Scaphechinus mirabilis.
    Kominami T; Takata H
    Biol Bull; 2000 Dec; 199(3):287-97. PubMed ID: 11147709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis.
    Kominami T; Takata H; Takaichi M
    Dev Growth Differ; 2001 Dec; 43(6):699-707. PubMed ID: 11737150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of veg2 blastomeres to induce endoderm differentiation in sea urchin embryos.
    Iijima M; Amemiya S
    Zoolog Sci; 2002 Jan; 19(1):81-5. PubMed ID: 12025408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    Kominami T; Takata H
    Dev Growth Differ; 2004 Aug; 46(4):309-26. PubMed ID: 15367199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron.
    Long JT; Irwin L; Enomoto AC; Grow Z; Ranck J; Peeler MT
    Genesis; 2015 Dec; 53(12):762-9. PubMed ID: 26297876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of pigment cells closely correlates the manner of gastrulation in sea urchin embryos.
    Takata H; Kominami T
    Zoolog Sci; 2004 Oct; 21(10):1025-35. PubMed ID: 15514472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micromere descendants at the blastula stage are involved in normal archenteron formation in sea urchin embryos.
    Ishizuka Y; Minokawa T; Amemiya S
    Dev Genes Evol; 2001 Feb; 211(2):83-8. PubMed ID: 11455418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
    Martik ML; McClay DR
    Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus.
    Martins GG; Summers RG; Morrill JB
    Dev Biol; 1998 Jun; 198(2):330-42. PubMed ID: 9659937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archenteron elongation in the sea urchin embryo is a microtubule-independent process.
    Hardin JD
    Dev Biol; 1987 May; 121(1):253-62. PubMed ID: 3552789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Frizzled receptors independently mediate endomesoderm specification and primary archenteron invagination during gastrulation in Nematostella.
    Wijesena N; Sun H; Kumburegama S; Wikramanayake AH
    Dev Biol; 2022 Jan; 481():215-225. PubMed ID: 34767794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins).
    Hibino T; Harada Y; Minokawa T; Nonaka M; Amemiya S
    Dev Genes Evol; 2004 Nov; 214(11):546-58. PubMed ID: 15372237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Involution during Sea Urchin Gastrulation Using Two-Photon Excited Photorelease and Confocal Microscopy.
    Piston DW; Summers RG; Knobel SM; Morrill JB
    Microsc Microanal; 1998 Jul; 4(4):404-414. PubMed ID: 9882716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental potential of small micromeres in sea urchin embryos.
    Kurihara H; Amemiya S
    Zoolog Sci; 2005 Aug; 22(8):845-52. PubMed ID: 16141697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regionalized Cell Division during Sea Urchin Gastrulation Contributes to Archenteron Formation and Is Correlated with the Establishment of Larval Symmetry: (sea urchin/gastrulation/cell division/autoradiography).
    Nislow C; Morrill JB
    Dev Growth Differ; 1988 Oct; 30(5):483-499. PubMed ID: 37281593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gastrulation in the sea urchin.
    McClay DR; Warner J; Martik M; Miranda E; Slota L
    Curr Top Dev Biol; 2020; 136():195-218. PubMed ID: 31959288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial exogastrulation due to apical-basal polarity of F-actin distribution disruption in sea urchin embryo by omeprazole.
    Watanabe K; Yasui Y; Kurose Y; Fujii M; Yamamoto T; Sakamoto N; Awazu A
    Genes Cells; 2022 Jun; 27(6):392-408. PubMed ID: 35347809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.