These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37282302)

  • 1. Vertical versus planar induction in amphibian early development.
    Nieuwkoop PD; Koster K
    Dev Growth Differ; 1995 Dec; 37(6):653-668. PubMed ID: 37282302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The appearance and extension of neural differentiation tendencies in the neurectoderm of the early chick embryo.
    Rao BR
    Wilhelm Roux Arch Entwickl Mech Org; 1968 Jun; 160(2):187-236. PubMed ID: 28304523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus.
    Poznanski A; Keller R
    Dev Biol; 1997 Apr; 184(2):351-66. PubMed ID: 9133441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of neuronal differentiation by planar signals in Xenopus embryos.
    Sater AK; Steinhardt RA; Keller R
    Dev Dyn; 1993 Aug; 197(4):268-80. PubMed ID: 8292824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar and vertical induction of anteroposterior pattern during the development of the amphibian central nervous system.
    Doniach T
    J Neurobiol; 1993 Oct; 24(10):1256-75. PubMed ID: 8228959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of vertical and planar signals during the early steps of neural induction.
    Grunz H; Schüren C; Richter K
    Int J Dev Biol; 1995 Jun; 39(3):539-43. PubMed ID: 7577445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neural induction process; its morphogenetic aspects.
    Nieuwkoop PD
    Int J Dev Biol; 1999; 43(7):615-23. PubMed ID: 10668971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsalization and neural induction: properties of the organizer in Xenopus laevis.
    Smith JC; Slack JM
    J Embryol Exp Morphol; 1983 Dec; 78():299-317. PubMed ID: 6663230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Planar signalling is not sufficient to generate a specific anterior/posterior neural pattern in pseudoexogastrula explants from Xenopus and Triturus.
    Chen Y; Hollemann T; Pieler T; Grunz H
    Mech Dev; 2000 Jan; 90(1):53-63. PubMed ID: 10585562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germ Layer Interactions in Pattern Formation of Amphibian Mesoderm during Primary Embryonic Induction: (germ layer interaction/mesoderm formation/embryonic induction/amphibian (Cynops) axis).
    Suzuki AS; Mifune Y; Kanéda T
    Dev Growth Differ; 1984; 26(1):81-94. PubMed ID: 37280880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of Xenopus snail in mesoderm and prospective neural fold ectoderm.
    Essex LJ; Mayor R; Sargent MG
    Dev Dyn; 1993 Oct; 198(2):108-22. PubMed ID: 8305705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BRAIN INDUCTION IN VARIOUSLY AGED PRESUMPTIVE ECTODERMS BY HEAD ORGANIZER IN CYNOPS PYRRHOGASTER.
    Ohara A
    Dev Growth Differ; 1980; 22(5):805-812. PubMed ID: 37281325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of the prechordal plate and patterning of the anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster.
    Kaneda T; Iwamoto Y; Motoki JY
    Dev Biol; 2009 Oct; 334(1):84-96. PubMed ID: 19643103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of anteroposterior neural pattern in Xenopus by planar signals.
    Doniach T
    Dev Suppl; 1992; ():183-93. PubMed ID: 1363721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos.
    Burgess AM
    J Anat; 1985 Jan; 140 ( Pt 1)(Pt 1):49-55. PubMed ID: 4066470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm.
    Cooke J; Smith JC
    Dev Biol; 1989 Feb; 131(2):383-400. PubMed ID: 2912801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle.
    Blitz IL; Cho KW
    Development; 1995 Apr; 121(4):993-1004. PubMed ID: 7743941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors responsible for the establishment of the body plan in the amphibian embryo.
    Grunz H
    Int J Dev Biol; 1996 Feb; 40(1):279-89. PubMed ID: 8735939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of the Neural Plate and the Mesoderm in Normally Developing Embryos of Xenopus laevis: (Xenopus laevis/neurogenesis/mesoderm formation/organizer/mesoplasm).
    Imoh H
    Dev Growth Differ; 1985; 27(1):1-11. PubMed ID: 37280808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis.
    Chen Y; Whitaker LL; Ramsdell AF
    Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.