These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37282324)

  • 1. Migration Behavior of Granule Cell Neurons in Cerebellar Cultures. II. An Electron Microscopic Study: (cerebellar granule cells/microexplant cultures/filopodia/cytoskeletal elements/electron microscopy).
    Ono K; Nakatsuji N; Nagata I
    Dev Growth Differ; 1994 Feb; 36(1):29-38. PubMed ID: 37282324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Migration Behavior of Granule Cell Neurons in Cerebellar Cultures I. A PKH26 Labeling Study in Microexplant and Organotypic Cultures: (mouse cerebellar granule cell/microexplant culture/organotypic explant culture/PKH26/migration).
    Nagata I; Nakatsuji N
    Dev Growth Differ; 1994 Feb; 36(1):19-27. PubMed ID: 37281409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures.
    Nagata I; Ono K; Kawana A; Kimura-Kuroda J
    J Comp Neurol; 2006 Nov; 499(2):274-89. PubMed ID: 16977618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filopodia and growth cones in the vertically migrating granule cells of the postnatal mouse cerebellum.
    Ono K; Shokunbi T; Nagata I; Tokunaga A; Yasui Y; Nakatsuji N
    Exp Brain Res; 1997 Oct; 117(1):17-29. PubMed ID: 9386001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behaviour of small inhibitory interneurons in early postnatal mouse cerebellar microexplant cultures: a video time-lapse analysis.
    Magyar-Lehmann S; Suter CS; Stahel W; Schachner M
    Eur J Neurosci; 1995 Jul; 7(7):1449-59. PubMed ID: 7551171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rodent CNS neuroblasts exhibit both perpendicular and parallel contact guidance on the aligned parallel neurite bundle.
    Nagata I; Nakatsuji N
    Development; 1991 Jun; 112(2):581-90. PubMed ID: 1794326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfilaments in cellular and developmental processes.
    Wessells NK; Spooner BS; Ash JF; Bradley MO; Luduena MA; Taylor EL; Wrenn JT; Yamada K
    Science; 1971 Jan; 171(3967):135-43. PubMed ID: 5538822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Granule cell behavior on laminin in cerebellar microexplant cultures.
    Nagata I; Nakatsuji N
    Brain Res Dev Brain Res; 1990 Mar; 52(1-2):63-73. PubMed ID: 2331801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytology and neuron-glial apposition of migrating cerebellar granule cells in vitro.
    Gregory WA; Edmondson JC; Hatten ME; Mason CA
    J Neurosci; 1988 May; 8(5):1728-38. PubMed ID: 3367219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paradoxical perpendicular contact guidance displayed by mouse cerebellar granule cell neurons in vitro.
    Nakatsuji N; Nagata I
    Development; 1989 Jul; 106(3):441-7. PubMed ID: 2689134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cytoskeletons of isolated, neuronal growth cones.
    Gordon-Weeks PR
    Neuroscience; 1987 Jun; 21(3):977-89. PubMed ID: 2888041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perpendicular contact guidance of CNS neuroblasts on artificial microstructures.
    Nagata I; Kawana A; Nakatsuji N
    Development; 1993 Jan; 117(1):401-8. PubMed ID: 8223260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration behavior of rodent granule neurons in the presence of antibody to the 4C5 antigen.
    Yfanti E; Nagata I; Patsavoudi E
    J Neurochem; 1998 Oct; 71(4):1381-9. PubMed ID: 9751168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological development and neurochemical differentiation of cerebellar inhibitory interneurons in microexplant cultures.
    Koscheck T; Weyer A; Schilling RL; Schilling K
    Neuroscience; 2003; 116(4):973-84. PubMed ID: 12617938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fasciculation of granule cell neurites is responsible for the perpendicular orientation of small inhibitory interneurons in mouse cerebellar microexplant cultures in vitro.
    Magyar-Lehmann S; Frei T; Schachner M
    Eur J Neurosci; 1995 Jul; 7(7):1460-71. PubMed ID: 7551172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic program for migration of cerebellar granule cells in vitro.
    Yacubova E; Komuro H
    J Neurosci; 2002 Jul; 22(14):5966-81. PubMed ID: 12122059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual phases of migration of cerebellar granule cells guided by axonal and dendritic leading processes.
    Kawaji K; Umeshima H; Eiraku M; Hirano T; Kengaku M
    Mol Cell Neurosci; 2004 Feb; 25(2):228-40. PubMed ID: 15019940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar external granule cells are attached to the basal lamina from the onset of migration up to the end of their proliferative activity.
    Hausmann B; Sievers J
    J Comp Neurol; 1985 Nov; 241(1):50-62. PubMed ID: 4056112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 6-Hydroxydopamine induced ectopia of external granule cells in the subarachnoid space covering the cerebellum. II. Differentiation of granule cells: a scanning and transmission electron microscopic study.
    Mangold U; Sievers J; Berry M
    J Comp Neurol; 1984 Aug; 227(2):267-84. PubMed ID: 6432859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.