These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37282737)

  • 21. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation.
    Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Activation of α-Fe
    Makimizu Y; Nguyen NT; Tucek J; Ahn HJ; Yoo J; Poornajar M; Hwang I; Kment S; Schmuki P
    Chemistry; 2020 Feb; 26(12):2685-2692. PubMed ID: 31788871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dendritic Hematite Nanoarray Photoanode Modified with a Conformal Titanium Dioxide Interlayer for Effective Charge Collection.
    Luo Z; Wang T; Zhang J; Li C; Li H; Gong J
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12878-12882. PubMed ID: 28742947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifunctional citrate-Ni
    Wang P; Li F; Long X; Wang T; Chai H; Yang H; Li S; Ma J; Jin J
    Nanoscale; 2021 Sep; 13(33):14197-14206. PubMed ID: 34477701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fe
    Wang Q; Zong X; Tian L; Han Y; Ding Y; Xu C; Tao R; Fan X
    ChemSusChem; 2022 Mar; 15(5):e202102377. PubMed ID: 35014210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Interface-cascading Silicon Photoanode with Strengthened Built-in Electric Field and Enriched Surface Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting.
    Yin Z; Zhang K; Shi Y; Wang Y; Shen S
    Chemistry; 2024 Mar; 30(15):e202303895. PubMed ID: 38198245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent SO Bonding Enables Enhanced Photoelectrochemical Performance of Cu
    Zhang Y; Huang Y; Zhu SS; Liu YY; Zhang X; Wang JJ; Braun A
    Small; 2021 Jul; 17(30):e2100320. PubMed ID: 34151514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing the Essential Role of Iron Phosphide and its Surface-Evolved Species in the Photoelectrochemical Water Oxidation by Gd-Doped Hematite Photoanode.
    Chai H; Gao L; Jin J
    ChemSusChem; 2022 Sep; 15(17):e202201030. PubMed ID: 35761757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heteroatom Doping Strategy for Establishing Hematite Homojunction as Efficient Photocatalyst for Accelerating Water Splitting.
    Tao SM; Chung RJ; Lin LY
    Chem Asian J; 2020 Nov; 15(22):3853-3860. PubMed ID: 32955150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fe
    Qin DD; He CH; Li Y; Trammel AC; Gu J; Chen J; Yan Y; Shan DL; Wang QH; Quan JJ; Tao CL; Lu XQ
    ChemSusChem; 2017 Jul; 10(13):2796-2804. PubMed ID: 28570775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient photoelectrochemical water oxidation using a TiO
    Jiang W; Jiang Y; Tong J; Zhang Q; Li S; Tong H; Xia L
    RSC Adv; 2018 Dec; 8(72):41439-41444. PubMed ID: 35559331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation.
    Chen C; Lu Y; Fan R; Shen M
    ChemSusChem; 2020 Aug; 13(15):3893-3900. PubMed ID: 32400054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Boosting the Photoactivity of BiVO
    Wen X; Fan M; Zhao Q; Li J; Liu G
    Chem Asian J; 2021 Dec; 16(24):4095-4102. PubMed ID: 34687500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.
    Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.