These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37282789)

  • 1. Construction of Microfluidic Chip Structure for Cell Migration Studies in Bioactive Ceramics.
    Ye S; Cao Q; Ni P; Xiong S; Zhong M; Yuan T; Shan J; Liang J; Fan Y; Zhang X
    Small; 2023 Oct; 19(40):e2302152. PubMed ID: 37282789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Design, simulation and application of multichannel microfluidic chip for cell migration].
    Li H; Yang X; Wu X; Li Z; Hong C; Liu Y; Zhu L; Yang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Feb; 39(1):128-138. PubMed ID: 35231974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic devices for neutrophil chemotaxis studies.
    Zhao W; Zhao H; Li M; Huang C
    J Transl Med; 2020 Apr; 18(1):168. PubMed ID: 32293474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments.
    Chi PY; Spuul P; Tseng FG; Genot E; Chou CF; Taloni A
    Adv Exp Med Biol; 2019; 1146():79-103. PubMed ID: 31612455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Lab-on-a-Chip for Studies of Cell Migration under Spatial Confinement.
    Sala F; Ficorella C; Osellame R; Käs JA; Martínez Vázquez R
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36004998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Instantaneous simulation of fluids and particles in complex microfluidic devices.
    Wang J; Rodgers VGJ; Brisk P; Grover WH
    PLoS One; 2017; 12(12):e0189429. PubMed ID: 29267312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lab-on-a-chip systems for cancer biomarker diagnosis.
    Özyurt C; Uludağ İ; İnce B; Sezgintürk MK
    J Pharm Biomed Anal; 2023 Mar; 226():115266. PubMed ID: 36706542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic Devices: A Tool for Nanoparticle Synthesis and Performance Evaluation.
    Gimondi S; Ferreira H; Reis RL; Neves NM
    ACS Nano; 2023 Aug; 17(15):14205-14228. PubMed ID: 37498731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Simulation, and Evaluation of Polymer-Based Microfluidic Devices via Computational Fluid Dynamics and Cell Culture "On-Chip".
    Bakuova N; Toktarkan S; Dyussembinov D; Azhibek D; Rakhymzhanov A; Kostas K; Kulsharova G
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidics in Biotechnology: Quo Vadis.
    Winkler S; Grünberger A; Bahnemann J
    Adv Biochem Eng Biotechnol; 2022; 179():355-380. PubMed ID: 33495924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detector-Free Photothermal Bar-Chart Microfluidic Chips (PT-Chips) for Visual Quantitative Detection of Biomarkers.
    Zhou W; Fu G; Li X
    Anal Chem; 2021 Jun; 93(21):7754-7762. PubMed ID: 33999603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips.
    Vivas A; van den Berg A; Passier R; Odijk M; van der Meer AD
    Lab Chip; 2022 Mar; 22(6):1231-1243. PubMed ID: 35178541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidics in Biotechnology: Overview and Status Quo.
    Bahnemann J; Grünberger A
    Adv Biochem Eng Biotechnol; 2022; 179():1-16. PubMed ID: 35333948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances of 3D Cell Co-Culture Technology Based on Microfluidic Chips.
    Li C; He W; Song Y; Zhang X; Sun J; Zhou Z
    Biosensors (Basel); 2024 Jul; 14(7):. PubMed ID: 39056612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Devices for Forensic DNA Analysis: A Review.
    Bruijns B; van Asten A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27527231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Leukocyte Behaviors on Microfluidic Chips.
    Liu Y; Yang Q; Cao L; Xu F
    Adv Healthc Mater; 2019 Feb; 8(4):e1801406. PubMed ID: 30672149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Microfluidics and Organ-on-a-Chip in Cancer Research.
    Regmi S; Poudel C; Adhikari R; Luo KQ
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making the invisible visible: a microfluidic chip using a low refractive index polymer.
    Hanada Y; Ogawa T; Koike K; Sugioka K
    Lab Chip; 2016 Jul; 16(13):2481-6. PubMed ID: 27265196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.