These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37282800)

  • 1. Molten-Salt Electrochemical Deoxidation Synthesis of Platinum-Neodymium Nanoalloy Catalysts for Oxygen Reduction Reaction.
    Fan C; Li G; Gu J; Wang Q; Li S; Li B
    Small; 2023 Oct; 19(40):e2300110. PubMed ID: 37282800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molten salt synthesis of carbon-supported Pt-rare earth metal nanoalloy catalysts for oxygen reduction reaction.
    Jiang Y; Fu T; Liu J; Zhao J; Li B; Chen Z
    RSC Adv; 2022 Feb; 12(8):4805-4812. PubMed ID: 35425521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple One-Step Molten Salt Method for Synthesizing Highly Efficient MXene-Supported Pt Nanoalloy Electrocatalysts.
    Wang Y; Li L; Shen M; Tang R; Zhou J; Han L; Zhang X; Zhang L; Kim G; Wang JQ
    Adv Sci (Weinh); 2023 Nov; 10(33):e2303693. PubMed ID: 37863664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molten-Salt Electrochemical-Assisted Synthesis of the CeO
    Fan C; Dou S; Zhan X; Li S; Wang Q; Li B
    Nano Lett; 2024 Jun; 24(23):6957-6964. PubMed ID: 38805355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature Synthesis of Sub-2 nm Ultrasmall Platinum-Rare-Earth Metal Nanoalloys for Hydrogen Evolution Reaction.
    Guan C; Chen H; Feng H
    Inorg Chem; 2022 Aug; 61(34):13379-13385. PubMed ID: 35976031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Molten Salt Synthesis of Platinum Alloys Planted in Metal-Nitrogen-Graphene for Efficient Oxygen Reduction.
    Zaman S; Su YQ; Dong CL; Qi R; Huang L; Qin Y; Huang YC; Li FM; You B; Guo W; Li Q; Ding S; Yu Xia B
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202115835. PubMed ID: 34894036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability.
    Li M; Liu F; Pei S; Zhou Z; Niu K; Wu J; Zhang Y
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Pt-Rare Earth Metal Nanoalloys.
    Hu Y; Jensen JO; Cleemann LN; Brandes BA; Li Q
    J Am Chem Soc; 2020 Jan; 142(2):953-961. PubMed ID: 31865700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of High-Performance Co-Based Alloy Nanocatalysts for the Oxygen Reduction Reaction.
    Zhao Z; Xu H; Feng Z; Zhang Y; Cui M; Cao D; Cheng D
    Chemistry; 2020 Mar; 26(18):4128-4135. PubMed ID: 31797431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yttrium oxide/gadolinium oxide-modified platinum nanoparticles as cathodes for the oxygen reduction reaction.
    Luo Y; Habrioux A; Calvillo L; Granozzi G; Alonso-Vante N
    Chemphyschem; 2014 Jul; 15(10):2136-44. PubMed ID: 24819164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alloy Nanocatalysts for the Electrochemical Oxygen Reduction (ORR) and the Direct Electrochemical Carbon Dioxide Reduction Reaction (CO
    Kim C; Dionigi F; Beermann V; Wang X; Möller T; Strasser P
    Adv Mater; 2019 Aug; 31(31):e1805617. PubMed ID: 30570788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Ru@Pt Core-Shell Catalysts for Enhanced Electrochemical Oxygen Reduction Mass Activity and Stability.
    Jackson A; Strickler A; Higgins D; Jaramillo TF
    Nanomaterials (Basel); 2018 Jan; 8(1):. PubMed ID: 29329264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructure Engineering and Electronic Modulation of a PtNi Alloy Catalyst for Enhanced Oxygen Reduction Electrocatalysis in Zinc-Air Batteries.
    Chen X; Guo J; Liu J; Luo Z; Zhang X; Qian D; Sun-Waterhouse D; Waterhouse GIN
    J Phys Chem Lett; 2023 Feb; 14(7):1740-1747. PubMed ID: 36758156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering carbon semi-tubes supported platinum catalyst for efficient oxygen reduction electrocatalysis.
    Cai J; Chen J; Chen Y; Zhang J; Zhang S
    iScience; 2023 May; 26(5):106730. PubMed ID: 37216112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pt-Mediated Interface Engineering Boosts the Oxygen Reduction Reaction Performance of Ni Hydroxide-Supported Pd Nanoparticles.
    Bhalothia D; Yan C; Hiraoka N; Ishii H; Liao YF; Chen PC; Wang KW; Chou JP; Dai S; Chen TY
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16177-16188. PubMed ID: 36939741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Characterization of Pt-Ag Alloy Nanocages with Enhanced Activity and Durability toward Oxygen Reduction.
    Yang X; Roling LT; Vara M; Elnabawy AO; Zhao M; Hood ZD; Bao S; Mavrikakis M; Xia Y
    Nano Lett; 2016 Oct; 16(10):6644-6649. PubMed ID: 27661446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A perspective on the controlled synthesis of iron-based nanoalloys for the oxygen reduction reaction.
    Huang X; Wang C; Hou Y
    Chem Commun (Camb); 2022 Aug; 58(64):8884-8899. PubMed ID: 35880675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Surfactant-Induced Platinum Nanospheres with a Porous Network Structure for Highly Effective Oxygen Reduction Catalysis.
    Zhao X; Sun L; Cai J; Jung JC; Xia Z; Zhang J; Zhang S
    Chem Asian J; 2022 Jul; 17(13):e202200338. PubMed ID: 35441827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Bimetallic Ag-Cu Nanoalloys for Highly Efficient Oxygen Reduction Catalysts: A Guideline for Designing Ag-Based Electrocatalysts with Activity Comparable to Pt/C-20.
    Wu X; Chen F; Zhang N; Qaseem A; Johnston RL
    Small; 2017 May; 13(19):. PubMed ID: 28296197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.