BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37282834)

  • 1. Integrated separation and detection of exosomes
    Han L; Zhu C; Tan Z; Wang J; Liao X; Xia XH; Wang C
    Chem Commun (Camb); 2023 Jun; 59(51):7967-7970. PubMed ID: 37282834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and simple isolation and detection of exosomes using CaTiO
    Back SJ; Kim W; Kim DY; Kim SJ; Hwang SR; Jung GB
    Anal Biochem; 2023 Jul; 673():115161. PubMed ID: 37201773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection of Cell-Derived Exosomes Via Surface-Enhanced Raman Scattering Using Aggregated Silver Nanoparticles.
    Li Y; Wang Y; Tian J; Huang JA
    Methods Mol Biol; 2023; 2668():15-22. PubMed ID: 37140786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective enrichment of trace exosomes for the label-free SERS detection via low-cost thermophoretic profiling.
    Guo Y; Zhang R; You H; Fang J
    Biosens Bioelectron; 2024 Jun; 253():116164. PubMed ID: 38422814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A magnetic surface-enhanced Raman scattering platform for performing successive breast cancer exosome isolation and analysis.
    Li G; Zhu N; Zhou J; Kang K; Zhou X; Ying B; Yi Q; Wu Y
    J Mater Chem B; 2021 Mar; 9(11):2709-2716. PubMed ID: 33683256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening and multiple detection of cancer exosomes using an SERS-based method.
    Wang Z; Zong S; Wang Y; Li N; Li L; Lu J; Wang Z; Chen B; Cui Y
    Nanoscale; 2018 May; 10(19):9053-9062. PubMed ID: 29718044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple and sensitive SERS detection of cancer-related exosomes based on gold-silver bimetallic nanotrepangs.
    Ning CF; Wang L; Tian YF; Yin BC; Ye BC
    Analyst; 2020 Apr; 145(7):2795-2804. PubMed ID: 32101180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering.
    Yang T; Guo X; Wu Y; Wang H; Fu S; Wen Y; Yang H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20985-93. PubMed ID: 25393238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source Tracing of Kidney Injury via the Multispectral Fingerprint Identified by Machine Learning-Driven Surface-Enhanced Raman Spectroscopic Analysis.
    Zhuang Y; Ouyang Y; Ding L; Xu M; Shi F; Shan D; Cao D; Cao X
    ACS Sens; 2024 May; 9(5):2622-2633. PubMed ID: 38700898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing gastric cancer exosomes with MoS
    Pan H; Dong Y; Gong L; Zhai J; Song C; Ge Z; Su Y; Zhu D; Chao J; Su S; Wang L; Wan Y; Fan C
    Biosens Bioelectron; 2022 Nov; 215():114553. PubMed ID: 35868121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Label-Free Platform for Identification of Exosomes from Different Sources.
    Yan Z; Dutta S; Liu Z; Yu X; Mesgarzadeh N; Ji F; Bitan G; Xie YH
    ACS Sens; 2019 Feb; 4(2):488-497. PubMed ID: 30644736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive detection of free testosterone assisted by magnetic nanobeads and gap-enhanced SERS nanotags.
    Liu B; Zheng S; Tang H; Liu Q; Li H; Gao B; Zhao X; Sun F
    Colloids Surf B Biointerfaces; 2022 Jun; 214():112460. PubMed ID: 35298951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved Label-Free Identification of Individual Exosome-like Vesicles with Au@Ag Nanoparticles as SERS Substrate.
    Fraire JC; Stremersch S; Bouckaert D; Monteyne T; De Beer T; Wuytens P; De Rycke R; Skirtach AG; Raemdonck K; De Smedt S; Braeckmans K
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39424-39435. PubMed ID: 31584796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introduction of multilayered magnetic core-dual shell SERS tags into lateral flow immunoassay: A highly stable and sensitive method for the simultaneous detection of multiple veterinary drugs in complex samples.
    Tu J; Wu T; Yu Q; Li J; Zheng S; Qi K; Sun G; Xiao R; Wang C
    J Hazard Mater; 2023 Apr; 448():130912. PubMed ID: 36758436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe
    Zhou Z; Xiao R; Cheng S; Wang S; Shi L; Wang C; Qi K; Wang S
    Anal Chim Acta; 2021 May; 1160():338421. PubMed ID: 33894956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: An easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements.
    MichaƂowska A; Krajczewski J; Kudelski A
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Sep; 277():121266. PubMed ID: 35452900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
    Wang Z; Zong S; Chen H; Wang C; Xu S; Cui Y
    Adv Healthc Mater; 2014 Nov; 3(11):1889-97. PubMed ID: 24862088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic SERS Strip Based on 4-mercaptophenylboronic Acid-Modified Fe
    Li J; Chen J; Dai Y; Liu Z; Zhao J; Liu S; Xiao R
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunomagnetic Capture and Multiplexed Surface Marker Detection of Circulating Tumor Cells with Magnetic Multicolor Surface-Enhanced Raman Scattering Nanotags.
    Wilson RE; O'Connor R; Gallops CE; Kwizera EA; Noroozi B; Morshed BI; Wang Y; Huang X
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47220-47232. PubMed ID: 32966038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.
    Wang C; Gu B; Liu Q; Pang Y; Xiao R; Wang S
    Int J Nanomedicine; 2018; 13():1159-1178. PubMed ID: 29520142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.