These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37282982)

  • 21. Scaling of avian bipedal locomotion reveals independent effects of body mass and leg posture on gait.
    Daley MA; Birn-Jeffery A
    J Exp Biol; 2018 May; 221(Pt 10):. PubMed ID: 29789347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat.
    Abelew TA; Miller MD; Cope TC; Nichols TR
    J Neurophysiol; 2000 Nov; 84(5):2709-14. PubMed ID: 11068014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical function of two ankle extensors in wild turkeys: shifts from energy production to energy absorption during incline versus decline running.
    Gabaldón AM; Nelson FE; Roberts TJ
    J Exp Biol; 2004 Jun; 207(Pt 13):2277-88. PubMed ID: 15159432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of goat distal hind limb muscle-tendon function in response to locomotor grade.
    McGuigan MP; Yoo E; Lee DV; Biewener AA
    J Exp Biol; 2009 Jul; 212(Pt 13):2092-104. PubMed ID: 19525436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Birds achieve high robustness in uneven terrain through active control of landing conditions.
    Birn-Jeffery AV; Daley MA
    J Exp Biol; 2012 Jun; 215(Pt 12):2117-27. PubMed ID: 22623200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.
    Daley MA; Felix G; Biewener AA
    J Exp Biol; 2007 Feb; 210(Pt 3):383-94. PubMed ID: 17234607
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait.
    Farris DJ; Sawicki GS
    Proc Natl Acad Sci U S A; 2012 Jan; 109(3):977-82. PubMed ID: 22219360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic trajectories in response to speed perturbations in walking suggest modular task-level control of leg angle and length.
    Schwaner MJ; Nishikawa KC; Daley MA
    Integr Comp Biol; 2022 May; ():. PubMed ID: 35612979
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood flow in guinea fowl Numida meleagris as an indicator of energy expenditure by individual muscles during walking and running.
    Ellerby DJ; Henry HT; Carr JA; Buchanan CI; Marsh RL
    J Physiol; 2005 Apr; 564(Pt 2):631-48. PubMed ID: 15731191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamics of mallard (Anas platyrynchos) gastrocnemius function during swimming versus terrestrial locomotion.
    Biewener AA; Corning WR
    J Exp Biol; 2001 May; 204(Pt 10):1745-56. PubMed ID: 11316495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strategies for obstacle avoidance during walking in the cat.
    Chu KMI; Seto SH; Beloozerova IN; Marlinski V
    J Neurophysiol; 2017 Aug; 118(2):817-831. PubMed ID: 28356468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Steep (30°) uphill walking vs. running: COM movements, stride kinematics, and leg muscle excitations.
    Whiting CS; Allen SP; Brill JW; Kram R
    Eur J Appl Physiol; 2020 Oct; 120(10):2147-2157. PubMed ID: 32705391
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Patterns of strain and activation in the thigh muscles of goats across gaits during level locomotion.
    Gillis GB; Flynn JP; McGuigan P; Biewener AA
    J Exp Biol; 2005 Dec; 208(Pt 24):4599-611. PubMed ID: 16326942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soleus H-reflex gain in humans walking and running under simulated reduced gravity.
    Ferris DP; Aagaard P; Simonsen EB; Farley CT; Dyhre-Poulsen P
    J Physiol; 2001 Jan; 530(Pt 1):167-80. PubMed ID: 11136869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Operating length and velocity of human vastus lateralis muscle during walking and running.
    Bohm S; Marzilger R; Mersmann F; Santuz A; Arampatzis A
    Sci Rep; 2018 Mar; 8(1):5066. PubMed ID: 29567999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.
    Malik RN; Cote R; Lam T
    J Neurophysiol; 2017 Jan; 117(1):36-46. PubMed ID: 27733593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of human ankle muscle vibration on posture and balance during adaptive locomotion.
    Sorensen KL; Hollands MA; Patla E
    Exp Brain Res; 2002 Mar; 143(1):24-34. PubMed ID: 11907687
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo behavior of the human soleus muscle with increasing walking and running speeds.
    Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG
    J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energetic costs of trunk and distal-limb loading during walking and running in guinea fowl Numida meleagris: II. Muscle energy use as indicated by blood flow.
    Ellerby DJ; Marsh RL
    J Exp Biol; 2006 Jun; 209(Pt 11):2064-75. PubMed ID: 16709909
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.