These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37283106)

  • 1. Effect of torso training on unstable surface on lower limb motor function in patients with incomplete spinal cord injury.
    Lou Y; Li L; Chen Q
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2023 Apr; 52(2):214-222. PubMed ID: 37283106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of robotic-assisted gait training on motor function and walking ability in children with thoracolumbar incomplete spinal cord injury.
    Ma TT; Zhang Q; Zhou TT; Zhang YQ; He Y; Li SJ; Liu QJ
    NeuroRehabilitation; 2022; 51(3):499-508. PubMed ID: 35964210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Consecutive 25-Week Program of Gait Training, Using the Alternating Hybrid Assistive Limb (HAL
    Kanazawa A; Yoshikawa K; Koseki K; Takeuchi R; Mutsuzaki H
    Medicina (Kaunas); 2019 Nov; 55(11):. PubMed ID: 31752225
    [No Abstract]   [Full Text] [Related]  

  • 5. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury.
    Villiger M; Bohli D; Kiper D; Pyk P; Spillmann J; Meilick B; Curt A; Hepp-Reymond MC; Hotz-Boendermaker S; Eng K
    Neurorehabil Neural Repair; 2013 Oct; 27(8):675-83. PubMed ID: 23757298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury.
    Yang JF; Norton J; Nevett-Duchcherer J; Roy FD; Gross DP; Gorassini MA
    Phys Ther; 2011 Jun; 91(6):931-43. PubMed ID: 21511993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait training in human spinal cord injury using electromechanical systems: effect of device type and patient characteristics.
    Benito-Penalva J; Edwards DJ; Opisso E; Cortes M; Lopez-Blazquez R; Murillo N; Costa U; Tormos JM; Vidal-Samsó J; Valls-Solé J; ; Medina J
    Arch Phys Med Rehabil; 2012 Mar; 93(3):404-12. PubMed ID: 22209475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury.
    Villiger M; Liviero J; Awai L; Stoop R; Pyk P; Clijsen R; Curt A; Eng K; Bolliger M
    Front Neurol; 2017; 8():635. PubMed ID: 29234302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of electromyographic biofeedback training on motor function of quadriceps femoris in patients with incomplete spinal cord injury: A randomized controlled trial.
    Guo Y; Gao F; Li J; Yang M; Li J; Yang D; Du L
    NeuroRehabilitation; 2021; 48(3):345-351. PubMed ID: 33814474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward improving functional recovery in spinal cord injury using robotics: a pilot study focusing on ankle rehabilitation.
    Calabrò RS; Billeri L; Ciappina F; Balletta T; Porcari B; Cannavò A; Pignolo L; Manuli A; Naro A
    Expert Rev Med Devices; 2022 Jan; 19(1):83-95. PubMed ID: 33616471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slowed down: response time deficits in well-recovered subjects with incomplete spinal cord injury.
    Labruyère R; Zimmerli M; van Hedel HJ
    Arch Phys Med Rehabil; 2013 Oct; 94(10):2020-6. PubMed ID: 23602883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of EMG biofeedback training of gluteus maximus muscle on gait parameters in incomplete spinal cord injury.
    Govil K; Noohu MM
    NeuroRehabilitation; 2013; 33(1):147-52. PubMed ID: 23949032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of robot-assisted gait training on lower extremity strength, functional independence, and walking function in men with incomplete traumatic spinal cord injury.
    Mıdık M; Paker N; Buğdaycı D; Mıdık AC
    Turk J Phys Med Rehabil; 2020 Mar; 66(1):54-59. PubMed ID: 32318675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between ASIA examination and functional outcomes in the NeuroRecovery Network Locomotor Training Program.
    Buehner JJ; Forrest GF; Schmidt-Read M; White S; Tansey K; Basso DM
    Arch Phys Med Rehabil; 2012 Sep; 93(9):1530-40. PubMed ID: 22920450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robot-assisted locomotor training did not improve walking function in patients with chronic incomplete spinal cord injury: A randomized clinical trial.
    Piira A; Lannem AM; Sørensen M; Glott T; Knutsen R; Jørgensen L; Gjesdal K; Hjeltnes N; Knutsen SF
    J Rehabil Med; 2019 May; 51(5):385-389. PubMed ID: 30895326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of lower extremity deep sensory impairments on walking capability in patients with incomplete cervical spinal cord injury.
    Naka T; Hayashi T; Sugyo A; Watanabe R; Towatari F; Maeda T
    J Spinal Cord Med; 2022 Mar; 45(2):287-292. PubMed ID: 32701408
    [No Abstract]   [Full Text] [Related]  

  • 20. Gait adaptation during walking on an inclined pathway following spinal cord injury.
    Desrosiers E; Duclos C; Nadeau S
    Clin Biomech (Bristol, Avon); 2014 May; 29(5):500-5. PubMed ID: 24805009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.