These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37283501)

  • 1. Enzyme Regulating the Wettability of the Outer Surface of Nanochannels.
    Hu JJ; Jiang W; Qiao Y; Ma Q; Du Q; Jiang JH; Lou X; Xia F
    ACS Nano; 2023 Jun; 17(12):11935-11945. PubMed ID: 37283501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Outer-Surface Functionalized Solid-State Nanochannels for Enhanced Sensing Properties: Progress and Perspective.
    Dai L; Zhang WQ; Ding D; Luo C; Jiang L; Huang Y; Xia F
    ACS Nano; 2024 Mar; 18(11):7677-7687. PubMed ID: 38450654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic Effect of Bio-Inspired Nanochannels: Hydrophilic DNA Probes at Inner Wall and Hydrophobic Coating at Outer Surface for Highly Sensitive Detection.
    Liu L; Luo C; Zhang J; He X; Shen Y; Yan B; Huang Y; Xia F; Jiang L
    Small; 2022 Sep; 18(37):e2201925. PubMed ID: 35980948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface.
    Jiang Y; Wang R; Ye C; Wang X; Wang D; Du Q; Liang H; Zhang S; Gao P
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35666-35674. PubMed ID: 38924711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-responsive nanochannels based on the supramolecular host-guest system.
    Quan J; Guo Y; Ma J; Long D; Wang J; Zhang L; Sun Y; Dhinakaran MK; Li H
    Front Chem; 2022; 10():986908. PubMed ID: 36212057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state nanochannels for bio-marker analysis.
    Huang Y; Liu L; Luo C; Liu W; Lou X; Jiang L; Xia F
    Chem Soc Rev; 2023 Sep; 52(18):6270-6293. PubMed ID: 37581902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ peptide self-assembly on ionic nanochannel for dynamic monitoring of MMPs in extracellular matrix.
    Wang L; Li H; Shi L; Li L; Jia F; Gao T; Li G
    Biosens Bioelectron; 2022 Jan; 195():113671. PubMed ID: 34624798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport properties in the pH-dependent bipolar nanochannels.
    Liu T; He X; Zhao J; Shi L; Zhou T; Wen L
    Electrophoresis; 2023 Dec; 44(23):1847-1858. PubMed ID: 37401641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels.
    Gao P; Ma Q; Ding D; Wang D; Lou X; Zhai T; Xia F
    Nat Commun; 2018 Nov; 9(1):4557. PubMed ID: 30385758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene Oxide-Mediated Regulation of Volume Exclusion and Wettability in Biomimetic Phosphorylation-Responsive Ionic Gates.
    Shi L; Nie B; Sha L; Ying K; Li J; Li G
    Nano Lett; 2023 Nov; 23(22):10326-10333. PubMed ID: 37931221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-Organic Framework-Decorated Nanochannel Electrode: Integration of Internal Nanoconfined Space and Outer Surface for Small-Molecule Sensing.
    Ma X; Li Y; Zhang J; Ma T; Zhang L; Chen Y; Ying Y; Fu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27034-27045. PubMed ID: 37232292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels.
    Liu T; Wu X; Xu H; Ma Q; Du Q; Yuan Q; Gao P; Xia F
    Anal Chem; 2021 Sep; 93(38):13054-13062. PubMed ID: 34519478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Hydrogen Peroxide-Activated Nanochannels and Their Applications in Cancer Cell Analysis.
    Wang X; Wu J; Lv R; Bai Y; Wang C; Zhang F; Liu Z
    Anal Chem; 2022 Apr; 94(16):6234-6241. PubMed ID: 35420413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards explicit regulating-ion-transport: nanochannels with only function-elements at outer-surface.
    Ma Q; Li Y; Wang R; Xu H; Du Q; Gao P; Xia F
    Nat Commun; 2021 Mar; 12(1):1573. PubMed ID: 33692350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity-Wettability Controlled Fast Transmission of Dopamine in Nanochannels.
    Fang Y; Xu W; Yang L; Qu H; Wang W; Zhang S; Li H
    Small; 2023 Apr; 19(15):e2205488. PubMed ID: 36617514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aquaporin-Inspired CPs/AAO Nanochannels for the Effective Detection of HCHO: Importance of a Hydrophilic/Hydrophobic Janus Device for High-Performance Sensing.
    Zhang D; Zhang X
    Nano Lett; 2022 May; 22(9):3793-3800. PubMed ID: 35499312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Solid-State Nanochannel Sensors: From Ionic Current Signals, Current, and Fluorescence Dual Signals to Faraday Current Signals.
    Zhang D; Zhang X
    Small; 2021 Oct; 17(43):e2100495. PubMed ID: 34117705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water transport and purification in nanochannels controlled by asymmetric wettability.
    Chen Q; Meng L; Li Q; Wang D; Guo W; Shuai Z; Jiang L
    Small; 2011 Aug; 7(15):2225-31. PubMed ID: 21608126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of outer surface probes for regulating ion gating of nanochannels.
    Li X; Zhai T; Gao P; Cheng H; Hou R; Lou X; Xia F
    Nat Commun; 2018 Jan; 9(1):40. PubMed ID: 29298982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo positron emission tomography imaging of protease activity by generation of a hydrophobic product from a noninhibitory protease substrate.
    Chuang CH; Chuang KH; Wang HE; Roffler SR; Shiea JT; Tzou SC; Cheng TC; Kao CH; Wu SY; Tseng WL; Cheng CM; Hou MF; Wang JM; Cheng TL
    Clin Cancer Res; 2012 Jan; 18(1):238-47. PubMed ID: 22019516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.