BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37283530)

  • 21. Use of Raman and Raman optical activity to extract atomistic details of saccharides in aqueous solution.
    Palivec V; Johannessen C; Kaminský J; Martinez-Seara H
    PLoS Comput Biol; 2022 Jan; 18(1):e1009678. PubMed ID: 35051172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intense chiral signal from α-helical poly-L-alanine observed in low-frequency Raman optical activity.
    Yamamoto S; Ishiro S; Kessler J; Bouř P
    Phys Chem Chem Phys; 2021 Dec; 23(46):26501-26509. PubMed ID: 34806737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational analysis of amphetamine and methamphetamine: a comprehensive approach by vibrational and chiroptical spectroscopy.
    Dobšíková K; Michal P; Spálovská D; Kuchař M; Paškanová N; Jurok R; Kapitán J; Setnička V
    Analyst; 2023 Mar; 148(6):1337-1348. PubMed ID: 36857656
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational flexibility of L-alanine zwitterion determines shapes of Raman and Raman optical activity spectral bands.
    Kapitan J; Baumruk V; Kopecký V; Bour P
    J Phys Chem A; 2006 Apr; 110(14):4689-96. PubMed ID: 16599435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinguishing Epimers Through Raman Optical Activity.
    Mutter ST; Zielinski F; Johannessen C; Popelier PL; Blanch EW
    J Phys Chem A; 2016 Mar; 120(11):1908-16. PubMed ID: 26928129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Raman optical activity of β-D-xylose: where experiment and computation meet.
    Zielinski F; Mutter ST; Johannessen C; Blanch EW; Popelier PL
    Phys Chem Chem Phys; 2015 Sep; 17(34):21799-809. PubMed ID: 26122177
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Establishing the link between fibril formation and Raman optical activity spectra of insulin.
    Kessler J; Yamamoto S; Bouř P
    Phys Chem Chem Phys; 2017 May; 19(21):13614-13621. PubMed ID: 28524190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman Optical Activity of N-Acetyl-L-Cysteine in Water and in Methanol: The "Clusters-in-a-Liquid" Model and ab Initio Molecular Dynamics Simulations.
    Yang Y; Cheramy J; Brehm M; Xu Y
    Chemphyschem; 2022 Jun; 23(11):e202200161. PubMed ID: 35353934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amide I Raman optical activity of polypeptides: fragment approximation.
    Choi JH; Cho M
    J Chem Phys; 2009 Jan; 130(1):014503. PubMed ID: 19140618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tracking of the polyproline folding by density functional computations and Raman optical activity spectra.
    Profant V; Baumruk V; Li X; Safařík M; Bouř P
    J Phys Chem B; 2011 Dec; 115(50):15079-89. PubMed ID: 22059986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface enhanced Raman optical activity (SEROA).
    Abdali S; Blanch EW
    Chem Soc Rev; 2008 May; 37(5):980-92. PubMed ID: 18443683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The importance of protonation in the investigation of protein phosphorylation using Raman spectroscopy and Raman optical activity.
    Ashton L; Johannessen C; Goodacre R
    Anal Chem; 2011 Oct; 83(20):7978-83. PubMed ID: 21919468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Influence of the Amino Acid Side Chains on the Raman Optical Activity Spectra of Proteins.
    Mensch C; Johannessen C
    Chemphyschem; 2019 Jan; 20(1):42-54. PubMed ID: 30350435
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational properties of the Pro-Gly motif in the D-Ala-l-Pro-Gly-D-Ala model peptide explored by a statistical analysis of the NMR, Raman, and Raman optical activity spectra.
    Budesínský M; Sebestík J; Bednarova L; Baumruk V; Safarík M; Bour P
    J Org Chem; 2008 Feb; 73(4):1481-9. PubMed ID: 18205382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Protonation States in the Stability of Molecular Dynamics Simulations of High-Resolution Membrane Protein Structures.
    Lasham J; Djurabekova A; Zickermann V; Vonck J; Sharma V
    J Phys Chem B; 2024 Mar; 128(10):2304-2316. PubMed ID: 38430110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Explicit versus implicit solvent modeling of Raman optical activity spectra.
    Hopmann KH; Ruud K; Pecul M; Kudelski A; Dračínský M; Bouř P
    J Phys Chem B; 2011 Apr; 115(14):4128-37. PubMed ID: 21417248
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vibrational Raman optical activity of enzymes.
    Barron LD; Cooper A; Ford SJ; Hecht L; Wen ZQ
    Faraday Discuss; 1992; (93):259-68. PubMed ID: 1290937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of Raman and Raman optical activity of saccharides in solution.
    Palivec V; Kopecký V; Jungwirth P; Bouř P; Kaminský J; Martinez-Seara H
    Phys Chem Chem Phys; 2020 Jan; 22(4):1983-1993. PubMed ID: 31930255
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational dynamics of carbohydrates: Raman optical activity of D-glucuronic acid and N-acetyl-D-glucosamine using a combined molecular dynamics and quantum chemical approach.
    Mutter ST; Zielinski F; Cheeseman JR; Johannessen C; Popelier PL; Blanch EW
    Phys Chem Chem Phys; 2015 Feb; 17(8):6016-27. PubMed ID: 25639972
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three types of induced tryptophan optical activity compared in model dipeptides: theory and experiment.
    Hudecová J; Horníček J; Buděšínský M; Šebestík J; Šafařík M; Zhang G; Keiderling TA; Bouř P
    Chemphyschem; 2012 Aug; 13(11):2748-60. PubMed ID: 22706803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.