These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37283534)
1. Phase Engineering of Intermetallic PtBi Fu X; Li H; Xu A; Xia F; Zhang L; Zhang J; Ma D; Wu J; Yue Q; Yang X; Kang Y Nano Lett; 2023 Jun; 23(12):5467-5474. PubMed ID: 37283534 [TBL] [Abstract][Full Text] [Related]
2. Sub-Monolayer SbO Hu X; An Z; Wang W; Lin X; Chan TS; Zhan C; Hu Z; Yang Z; Huang X; Bu L J Am Chem Soc; 2023 Sep; 145(35):19274-19282. PubMed ID: 37585588 [TBL] [Abstract][Full Text] [Related]
3. Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation. Luo S; Chen W; Cheng Y; Song X; Wu Q; Li L; Wu X; Wu T; Li M; Yang Q; Deng K; Quan Z Adv Mater; 2019 Oct; 31(40):e1903683. PubMed ID: 31423678 [TBL] [Abstract][Full Text] [Related]
4. Medium/High-Entropy Amalgamated Core/Shell Nanoplate Achieves Efficient Formic Acid Catalysis for Direct Formic Acid Fuel Cell. Zhan C; Bu L; Sun H; Huang X; Zhu Z; Yang T; Ma H; Li L; Wang Y; Geng H; Wang W; Zhu H; Pao CW; Shao Q; Yang Z; Liu W; Xie Z; Huang X Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202213783. PubMed ID: 36400747 [TBL] [Abstract][Full Text] [Related]
5. Highly Selective Synthesis of Monoclinic-Phased Platinum-Tellurium Nanotrepang for Direct Formic Acid Oxidation Catalysis. Dong C; Wang X; Zhu Z; Zhan C; Lin X; Bu L; Ye J; Wang Y; Liu W; Huang X J Am Chem Soc; 2023 Jul; 145(28):15393-15404. PubMed ID: 37429024 [TBL] [Abstract][Full Text] [Related]
6. Platinum-Lead-Bismuth/Platinum-Bismuth Core/Shell Nanoplate Achieves Complete Dehydrogenation Pathway for Direct Formic Acid Oxidation Catalysis. Hu X; Xiao Z; Wang W; Bu L; An Z; Liu S; Pao CW; Zhan C; Hu Z; Yang Z; Wang Y; Huang X J Am Chem Soc; 2023 Jul; 145(28):15109-15117. PubMed ID: 37289521 [TBL] [Abstract][Full Text] [Related]
7. Wet-chemistry synthesis of two-dimensional Pt- and Pd-based intermetallic electrocatalysts for fuel cells. Guo J; Liu W; Fu X; Jiao S Nanoscale; 2023 May; 15(19):8508-8531. PubMed ID: 37114369 [TBL] [Abstract][Full Text] [Related]
8. C2 Alcohol Oxidation Boosted by Trimetallic PtPbBi Hexagonal Nanoplates. Zhu Z; Liu F; Fan J; Li Q; Min Y; Xu Q ACS Appl Mater Interfaces; 2020 Nov; 12(47):52731-52740. PubMed ID: 33169980 [TBL] [Abstract][Full Text] [Related]
9. In Situ Exfoliation and Pt Deposition of Antimonene for Formic Acid Oxidation via a Predominant Dehydrogenation Pathway. Zhang Y; Qiao M; Huang Y; Zou Y; Liu Z; Tao L; Li Y; Dong CL; Wang S Research (Wash D C); 2020; 2020():5487237. PubMed ID: 32266330 [TBL] [Abstract][Full Text] [Related]
10. Interface-rich porous Fe-doped hcp-PtBi/fcc-Pt heterostructured nanoplates enhanced the CC bond cleavage of C3 alcohols electrooxidation. Yang X; Dong K; Zheng Z; Zhang Y; Yuan Q J Colloid Interface Sci; 2025 Jan; 678(Pt B):153-161. PubMed ID: 39241446 [TBL] [Abstract][Full Text] [Related]
11. Heterostructured Pt-PbS Nanobelt Achieves Remarkable Direct Formic Acid Oxidation Catalysis. Liu L; Jin L; Xiao Z; Fang N; Lin X; Ji Y; Wang Y; Li Y; Huang X; Bu L Nano Lett; 2024 Jul; 24(26):8162-8170. PubMed ID: 38904300 [TBL] [Abstract][Full Text] [Related]
12. In-situ Bi-modified Pt towards glycerol and formic acid electro-oxidation: Effects of catalyst structure and surface microenvironment on activity and selectivity. Ning X; Zhan L; Zhou X; Luo J; Wang Y J Colloid Interface Sci; 2024 Feb; 655():920-930. PubMed ID: 37979297 [TBL] [Abstract][Full Text] [Related]
13. One-Step, Facile and Ultrafast Synthesis of Phase- and Size-Controlled Pt-Bi Intermetallic Nanocatalysts through Continuous-Flow Microfluidics. Zhang D; Wu F; Peng M; Wang X; Xia D; Guo G J Am Chem Soc; 2015 May; 137(19):6263-9. PubMed ID: 25932623 [TBL] [Abstract][Full Text] [Related]
14. A Biphasic Strategy to Synergistically Accelerate Activation and CO Spillover in Formic Acid Oxidation Catalysis. Zhan C; Sun H; Yan W; Xia J; Meng XM; Li T; Bu L; Kong Q; Lin H; Liu W; Huang X; Chen N Nano Lett; 2024 Jul; 24(26):8134-8142. PubMed ID: 38900138 [TBL] [Abstract][Full Text] [Related]
15. VO Deng Y; Zhang L; Zheng J; Dang D; Zhang J; Gu X; Yang X; Tan W; Wang L; Zeng L; Chen C; Wang T; Cui Z Small; 2024 Aug; 20(31):e2400381. PubMed ID: 38639308 [TBL] [Abstract][Full Text] [Related]
16. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances. Chen Q; Zhang J; Jia Y; Jiang Z; Xie Z; Zheng L Nanoscale; 2014 Jun; 6(12):7019-24. PubMed ID: 24841616 [TBL] [Abstract][Full Text] [Related]
17. Structurally ordered PtSn intermetallic nanoparticles supported on ATO for efficient methanol oxidation reaction. Chen W; Lei Z; Zeng T; Wang L; Cheng N; Tan Y; Mu S Nanoscale; 2019 Nov; 11(42):19895-19902. PubMed ID: 31599300 [TBL] [Abstract][Full Text] [Related]
18. Strategies to enhance the electrochemical performances of Pt-based intermetallic catalysts. Zhang J; Zhang L; Cui Z Chem Commun (Camb); 2021 Jan; 57(1):11-26. PubMed ID: 33295889 [TBL] [Abstract][Full Text] [Related]
19. Electrocatalytic mechanism and kinetics of SOMs oxidation on ordered PtPb and PtBi intermetallic compounds: DEMS and FTIRS study. Wang H; Alden L; Disalvo FJ; Abruña HD Phys Chem Chem Phys; 2008 Jul; 10(25):3739-51. PubMed ID: 18563235 [TBL] [Abstract][Full Text] [Related]
20. Intermetallic Nanoparticles: Synthetic Control and Their Enhanced Electrocatalysis. Li J; Sun S Acc Chem Res; 2019 Jul; 52(7):2015-2025. PubMed ID: 31251036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]