These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 37284086)

  • 1. Semi-automated algorithm using directional filter for the precise quantification of non-perfusion area on widefield swept-source optical coherence tomography angiograms.
    Garg I; Miller JB
    Quant Imaging Med Surg; 2023 Jun; 13(6):3688-3702. PubMed ID: 37284086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonperfusion Area and Other Vascular Metrics by Wider Field Swept-Source OCT Angiography as Biomarkers of Diabetic Retinopathy Severity.
    Garg I; Uwakwe C; Le R; Lu ES; Cui Y; Wai KM; Katz R; Zhu Y; Moon JY; Li CY; Laíns I; Eliott D; Elze T; Kim LA; Wu DM; Miller JW; Husain D; Vavvas DG; Miller JB
    Ophthalmol Sci; 2022 Jun; 2(2):. PubMed ID: 35647573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of widefield swept-source optical coherence tomography angiography with ultra-widefield colour fundus photography and fluorescein angiography for detection of lesions in diabetic retinopathy.
    Cui Y; Zhu Y; Wang JC; Lu Y; Zeng R; Katz R; Vingopoulos F; Le R; Laíns I; Wu DM; Eliott D; Vavvas DG; Husain D; Miller JW; Kim LA; Miller JB
    Br J Ophthalmol; 2021 Apr; 105(4):577-581. PubMed ID: 32591347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WF SS-OCTA for detecting diabetic retinopathy and evaluating the effect of photocoagulation on posterior vitreous detachment.
    Gong Y; Hu L; Wang L; Shao Y; Li X
    Front Endocrinol (Lausanne); 2022; 13():1029066. PubMed ID: 36531502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Plexus Nonperfusion Area Segmentation in Widefield OCT Angiography Using a Deep Convolutional Neural Network.
    Guo Y; Hormel TT; Gao M; You Q; Wang J; Flaxel CJ; Bailey ST; Hwang TS; Jia Y
    Transl Vis Sci Technol; 2024 Jul; 13(7):15. PubMed ID: 39023443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-widefield color fundus photography combined with high-speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy.
    Li J; Wei D; Mao M; Li M; Liu S; Li F; Chen L; Liu M; Leng H; Wang Y; Ning X; Liu Y; Dong W; Zhong J
    Front Public Health; 2022; 10():1047608. PubMed ID: 36408020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different scan areas affect the detection rates of diabetic retinopathy lesions by high-speed ultra-widefield swept-source optical coherence tomography angiography.
    Li M; Mao M; Wei D; Liu M; Liu X; Leng H; Wang Y; Chen S; Zhang R; Zeng Y; Wang M; Li J; Zhong J
    Front Endocrinol (Lausanne); 2023; 14():1111360. PubMed ID: 36891051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalence of venous loops and association with retinal ischemia in diabetic retinopathy using widefield swept-source OCT angiography.
    Le R; Cui Y; Lu ES; Zhu Y; Garg I; Wang JC; Lu Y; Zeng R; Katz R; Laíns I; Eliott D; Husain D; Kim LA; Miller JB
    Graefes Arch Clin Exp Ophthalmol; 2023 Jul; 261(7):1861-1870. PubMed ID: 36715770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of retinal microvascular parameters by severity of diabetic retinopathy using wide-field swept-source optical coherence tomography angiography.
    Kim K; In You J; Park JR; Kim ES; Oh WY; Yu SY
    Graefes Arch Clin Exp Ophthalmol; 2021 Aug; 259(8):2103-2111. PubMed ID: 33528650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Widefield Optical Coherence Tomography Angiography in Assessing the Severity of Diabetic Retinopathy.
    Parameswarappa DC; Langstang AJ; Kavya S; Mohamed A; Stewart MW; Rani PK
    Ophthalmol Ther; 2024 Sep; 13(9):2369-2380. PubMed ID: 38995480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of Nonperfusion Area in Montaged Widefield OCT Angiography Using Deep Learning in Diabetic Retinopathy.
    Guo Y; Hormel TT; Gao L; You Q; Wang B; Flaxel CJ; Bailey ST; Choi D; Huang D; Hwang TS; Jia Y
    Ophthalmol Sci; 2021 Jun; 1(2):100027. PubMed ID: 36249293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feasibility and Clinical Utility of Wide-Field Optical Coherence Tomography Angiography Compared to Ultrawide-Field Fluorescein Angiography in Patients with Diabetic Retinopathy.
    Bajka A; Bacci T; Wiest MRJ; Brinkmann M; Hamann T; Toro M; Zweifel SA
    Klin Monbl Augenheilkd; 2023 Apr; 240(4):490-495. PubMed ID: 37164407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinically Significant Nonperfusion Areas on Widefield OCT Angiography in Diabetic Retinopathy.
    Kawai K; Murakami T; Mori Y; Ishihara K; Dodo Y; Terada N; Nishikawa K; Morino K; Tsujikawa A
    Ophthalmol Sci; 2023 Mar; 3(1):100241. PubMed ID: 36545265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of widefield swept-source optical coherence tomographic angiography and fluorescein fundus angiography for detection of retinal neovascularization with diabetic retinopathy.
    Yang Y; Li F; Liu T; Jiao W; Zhao B
    BMC Ophthalmol; 2023 Jul; 23(1):315. PubMed ID: 37438731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of Capillary Nonperfusion Progression on Widefield OCT Angiography in Diabetic Retinopathy.
    Yoshida M; Murakami T; Kawai K; Nishikawa K; Ishihara K; Mori Y; Tsujikawa A
    Invest Ophthalmol Vis Sci; 2023 Oct; 64(13):24. PubMed ID: 37847225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography.
    Russell JF; Flynn HW; Sridhar J; Townsend JH; Shi Y; Fan KC; Scott NL; Hinkle JW; Lyu C; Gregori G; Russell SR; Rosenfeld PJ
    Am J Ophthalmol; 2019 Nov; 207():110-120. PubMed ID: 31194952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widefield OCT-Angiography and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti-Vascular Endothelial Growth Factor.
    Couturier A; Rey PA; Erginay A; Lavia C; Bonnin S; Dupas B; Gaudric A; Tadayoni R
    Ophthalmology; 2019 Dec; 126(12):1685-1694. PubMed ID: 31383483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of 24×20 mm
    Zeng QZ; Li SY; Yao YO; Jin EZ; Qu JF; Zhao MW
    Int J Ophthalmol; 2022; 15(11):1798-1805. PubMed ID: 36404980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swept-source optical coherence tomography angiography vitreo-retinal segmentation in proliferative diabetic retinopathy.
    Papayannis A; Tsamis E; Stringa F; Iacono P; Battaglia Parodi M; Stanga PE
    Eur J Ophthalmol; 2021 Jul; 31(4):1925-1932. PubMed ID: 32722940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography.
    Russell JF; Al-Khersan H; Shi Y; Scott NL; Hinkle JW; Fan KC; Lyu C; Feuer WJ; Gregori G; Rosenfeld PJ
    Am J Ophthalmol; 2020 May; 213():177-185. PubMed ID: 32006481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.