These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37284124)

  • 1. Cartilage morphometry and magnetic susceptibility measurement for knee osteoarthritis with automatic cartilage segmentation.
    Zhang Q; Geng J; Zhang M; Kan T; Wang L; Ai S; Wei H; Zhang L; Liu C
    Quant Imaging Med Surg; 2023 Jun; 13(6):3508-3521. PubMed ID: 37284124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated cartilage segmentation and quantification using 3D ultrashort echo time (UTE) cones MR imaging with deep convolutional neural networks.
    Xue YP; Jang H; Byra M; Cai ZY; Wu M; Chang EY; Ma YJ; Du J
    Eur Radiol; 2021 Oct; 31(10):7653-7663. PubMed ID: 33783571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative measurement of cartilage volume with automatic cartilage segmentation in knee osteoarthritis.
    Hou W; Zhao J; He R; Li J; Ou Y; Du M; Xiong X; Xie B; Li L; Zhou X; Zuo P; Raithel E; Zhang Z; Chen W
    Clin Rheumatol; 2021 May; 40(5):1997-2006. PubMed ID: 33026551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully Automatic Knee Joint Segmentation and Quantitative Analysis for Osteoarthritis from Magnetic Resonance (MR) Images Using a Deep Learning Model.
    Tang X; Guo D; Liu A; Wu D; Liu J; Xu N; Qin Y
    Med Sci Monit; 2022 Jun; 28():e936733. PubMed ID: 35698440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis.
    Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G
    Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative susceptibility mapping of articular cartilage in patients with osteoarthritis at 3T.
    Wei H; Lin H; Qin L; Cao S; Zhang Y; He N; Chen W; Yan F; Liu C
    J Magn Reson Imaging; 2019 Jun; 49(6):1665-1675. PubMed ID: 30584684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-automatic framework based upon quantitative analysis of MR-images for classification of femur cartilage into asymptomatic, early OA, and advanced-OA groups.
    Thaha R; Jogi SP; Rajan S; Mahajan V; Mehndiratta A; Singh A
    J Orthop Res; 2022 Apr; 40(4):779-790. PubMed ID: 34057761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning.
    Byra M; Wu M; Zhang X; Jang H; Ma YJ; Chang EY; Shah S; Du J
    Magn Reson Med; 2020 Mar; 83(3):1109-1122. PubMed ID: 31535731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical validation of the use of prototype software for automatic cartilage segmentation to quantify knee cartilage in volunteers.
    Zhang P; Zhang RX; Chen XS; Zhou XY; Raithel E; Cui JL; Zhao J
    BMC Musculoskelet Disord; 2022 Jan; 23(1):19. PubMed ID: 34980107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducibility of an Automated Quantitative MRI Assessment of Low-Grade Knee Articular Cartilage Lesions.
    Juras V; Szomolanyi P; Schreiner MM; Unterberger K; Kurekova A; Hager B; Laurent D; Raithel E; Meyer H; Trattnig S
    Cartilage; 2021 Dec; 13(1_suppl):646S-657S. PubMed ID: 32988236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entropy and distance maps-guided segmentation of articular cartilage: data from the Osteoarthritis Initiative.
    Li Z; Chen K; Liu P; Chen X; Zheng G
    Int J Comput Assist Radiol Surg; 2022 Mar; 17(3):553-560. PubMed ID: 34988758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images--data from the Osteoarthritis Initiative.
    Paproki A; Engstrom C; Chandra SS; Neubert A; Fripp J; Crozier S
    Osteoarthritis Cartilage; 2014 Sep; 22(9):1259-70. PubMed ID: 25014660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion.
    Thaha R; Jogi SP; Rajan S; Mahajan V; Venugopal VK; Mehndiratta A; Singh A
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):403-413. PubMed ID: 31927688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.
    Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S
    Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning for Automatic Bone Marrow Apparent Diffusion Coefficient Measurements From Whole-Body Magnetic Resonance Imaging in Patients With Multiple Myeloma: A Retrospective Multicenter Study.
    Wennmann M; Neher P; Stanczyk N; Kahl KC; Kächele J; Weru V; Hielscher T; Grözinger M; Chmelik J; Zhang KS; Bauer F; Nonnenmacher T; Debic M; Sauer S; Rotkopf LT; Jauch A; Schlamp K; Mai EK; Weinhold N; Afat S; Horger M; Goldschmidt H; Schlemmer HP; Weber TF; Delorme S; Kurz FT; Maier-Hein K
    Invest Radiol; 2023 Apr; 58(4):273-282. PubMed ID: 36256790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance image segmentation using semi-automated software for quantification of knee articular cartilage---initial evaluation of a technique for paired scans.
    Brem MH; Lang PK; Neumann G; Schlechtweg PM; Schneider E; Jackson R; Yu J; Eaton CB; Hennig FF; Yoshioka H; Pappas G; Duryea J
    Skeletal Radiol; 2009 May; 38(5):505-11. PubMed ID: 19252907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Differences in Longitudinal Cartilage Thickness Loss Using a Deep-Learning Automated Segmentation Algorithm: Data From the Foundation for the National Institutes of Health Biomarkers Study of the Osteoarthritis Initiative.
    Eckstein F; Chaudhari AS; Fuerst D; Gaisberger M; Kemnitz J; Baumgartner CF; Konukoglu E; Hunter DJ; Wirth W
    Arthritis Care Res (Hoboken); 2022 Jun; 74(6):929-936. PubMed ID: 33337584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalizability of Deep Learning Segmentation Algorithms for Automated Assessment of Cartilage Morphology and MRI Relaxometry.
    Schmidt AM; Desai AD; Watkins LE; Crowder HA; Black MS; Mazzoli V; Rubin EB; Lu Q; MacKay JW; Boutin RD; Kogan F; Gold GE; Hargreaves BA; Chaudhari AS
    J Magn Reson Imaging; 2023 Apr; 57(4):1029-1039. PubMed ID: 35852498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies.
    Zhang K; Lu W; Marziliano P
    Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.