BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37284168)

  • 1. Enhancing Disease Classification in Abdominal CT Scans through RGB Superposition Methods and 2D Convolutional Neural Networks: A Study of Appendicitis and Diverticulitis.
    Lee GP; Park SH; Kim YJ; Chung JW; Kim KG
    Comput Math Methods Med; 2023; 2023():7714483. PubMed ID: 37284168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between single and serial computed tomography images in classification of acute appendicitis, acute right-sided diverticulitis, and normal appendix using EfficientNet.
    Park SH; Kim YJ; Kim KG; Chung JW; Kim HC; Choi IY; You MW; Lee GP; Hwang JH
    PLoS One; 2023; 18(5):e0281498. PubMed ID: 37224137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of Alzheimer's disease using structure highlighting key slice stacking and transfer learning.
    Ban Y; Zhang X; Lao H
    Med Phys; 2022 Sep; 49(9):5855-5869. PubMed ID: 35894542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy to implement a convolutional neural network based ideal model observer via transfer learning for multi-slice simulated breast CT images.
    Kim G; Han M; Baek J
    Phys Med Biol; 2023 May; 68(11):. PubMed ID: 37137323
    [No Abstract]   [Full Text] [Related]  

  • 7. An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans.
    Wang Z; Meng Y; Weng F; Chen Y; Lu F; Liu X; Hou M; Zhang J
    Ann Biomed Eng; 2020 Jan; 48(1):312-328. PubMed ID: 31451989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BRR-Net: A tandem architectural CNN-RNN for automatic body region localization in CT images.
    Agrawal V; Udupa J; Tong Y; Torigian D
    Med Phys; 2020 Oct; 47(10):5020-5031. PubMed ID: 32761899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tumor Diagnosis against Other Brain Diseases Using T2 MRI Brain Images and CNN Binary Classifier and DWT.
    Papadomanolakis TN; Sergaki ES; Polydorou AA; Krasoudakis AG; Makris-Tsalikis GN; Polydorou AA; Afentakis NM; Athanasiou SA; Vardiambasis IO; Zervakis ME
    Brain Sci; 2023 Feb; 13(2):. PubMed ID: 36831891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fusing 2D and 3D convolutional neural networks for the segmentation of aorta and coronary arteries from CT images.
    Gu L; Cai XC
    Artif Intell Med; 2021 Nov; 121():102189. PubMed ID: 34763804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Abdominal Aortic Thrombus Segmentation in Postoperative Computed Tomography Angiography Images Using Bi-Directional Convolutional Long Short-Term Memory Architecture.
    Jung Y; Kim S; Kim J; Hwang B; Lee S; Kim EY; Kim JH; Hwang H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesizing images from multiple kernels using a deep convolutional neural network.
    Missert AD; Yu L; Leng S; Fletcher JG; McCollough CH
    Med Phys; 2020 Feb; 47(2):422-430. PubMed ID: 31714999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-dose CT denoising via convolutional neural network with an observer loss function.
    Han M; Shim H; Baek J
    Med Phys; 2021 Oct; 48(10):5727-5742. PubMed ID: 34387360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multislice input for 2D and 3D residual convolutional neural network noise reduction in CT.
    Zhou Z; Huber NR; Inoue A; McCollough CH; Yu L
    J Med Imaging (Bellingham); 2023 Jan; 10(1):014003. PubMed ID: 36743869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional-neural-network-based diagnosis of appendicitis via CT scans in patients with acute abdominal pain presenting in the emergency department.
    Park JJ; Kim KA; Nam Y; Choi MH; Choi SY; Rhie J
    Sci Rep; 2020 Jun; 10(1):9556. PubMed ID: 32533053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computed tomography super-resolution using deep convolutional neural network.
    Park J; Hwang D; Kim KY; Kang SK; Kim YK; Lee JS
    Phys Med Biol; 2018 Jul; 63(14):145011. PubMed ID: 29923839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based body part recognition algorithm for three-dimensional medical images.
    Ouyang Z; Zhang P; Pan W; Li Q
    Med Phys; 2022 May; 49(5):3067-3079. PubMed ID: 35157332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.