These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37284185)

  • 1. Effect of acid treatment on boosting the photoelectrochemical performance of doped and codoped α-Fe
    Wang Y; Liu J; Xu J; Hao X
    RSC Adv; 2023 May; 13(24):16765-16772. PubMed ID: 37284185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of Ti-Pt Co-doped α-Fe
    Zhong Z; Zhan G; Du B; Lu X; Qin Z; Xiao J
    J Colloid Interface Sci; 2023 Jul; 641():91-104. PubMed ID: 36924549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy and environmental applications of Sn
    Nagappagari LR; Lee J; Lee H; Jeong B; Lee K
    Environ Pollut; 2021 Feb; 271():116318. PubMed ID: 33360662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of an ultrathin ZIF-67 layer on the surface of Sn/Ti co-doped hematite for efficient photoelectrochemical water oxidation.
    Huang P; Miao X; Wu J; Zhang P; Zhang H; Bai S; Liu W
    Dalton Trans; 2022 Jun; 51(22):8848-8854. PubMed ID: 35621155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mono-Doped and Co-Doped Nanostructured Hematite for Improved Photoelectrochemical Water Splitting.
    Nyarige JS; Paradzah AT; Krüger TPJ; Diale M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trade-off between Zr Passivation and Sn Doping on Hematite Nanorod Photoanodes for Efficient Solar Water Oxidation: Effects of a ZrO2 Underlayer and FTO Deformation.
    Subramanian A; Annamalai A; Lee HH; Choi SH; Ryu J; Park JH; Jang JS
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19428-37. PubMed ID: 27420603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ti-doped α-Fe
    Yan D; Liu J; Shang Z; Luo H
    Dalton Trans; 2017 Aug; 46(32):10558-10563. PubMed ID: 28466901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced photoelectrochemical water oxidation performance of a hematite photoanode by decorating with Au-Pt core-shell nanoparticles.
    Chen B; Fan W; Mao B; Shen H; Shi W
    Dalton Trans; 2017 Nov; 46(46):16050-16057. PubMed ID: 29119164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ni/Si-Codoped TiO
    Li T; Ding D
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple electrodeposition to synthesize a NiFeS
    Wang H; Zhang R; Li YY; Wang D; Lin Y; Xie T
    Dalton Trans; 2021 Nov; 50(43):15551-15557. PubMed ID: 34665188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activating the surface and bulk of hematite photoanodes to improve solar water splitting.
    Zhang H; Park JH; Byun WJ; Song MH; Lee JS
    Chem Sci; 2019 Nov; 10(44):10436-10444. PubMed ID: 32110336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unveiling the influence of 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin on the photogenerated charge behavior and photoelectrochemical water oxidation of hematite photoanode.
    Bu Q; Liu X; Zhao Q; Lu G; Zhu X; Liu Q; Xie T
    J Colloid Interface Sci; 2022 Nov; 626():345-354. PubMed ID: 35792465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ growth of α-Fe
    Li C; Chen Z; Yuan W; Xu QH; Li CM
    Nanoscale; 2019 Jan; 11(3):1111-1122. PubMed ID: 30574647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.