These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37284253)

  • 1. Implementation of grain mapping by diffraction contrast tomography on a conventional laboratory tomography setup with various detectors.
    Fang H; Ludwig W; Lhuissier P
    J Appl Crystallogr; 2023 Jun; 56(Pt 3):810-824. PubMed ID: 37284253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved grain mapping by laboratory X-ray diffraction contrast tomography.
    Fang H; Juul Jensen D; Zhang Y
    IUCrJ; 2021 Jul; 8(Pt 4):559-573. PubMed ID: 34258005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction algorithms for grain mapping by laboratory X-ray diffraction contrast tomography.
    Fang H; Ludwig W; Lhuissier P
    J Appl Crystallogr; 2022 Dec; 55(Pt 6):1652-1663. PubMed ID: 36570667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy.
    McDonald SA; Reischig P; Holzner C; Lauridsen EM; Withers PJ; Merkle AP; Feser M
    Sci Rep; 2015 Oct; 5():14665. PubMed ID: 26494523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing laboratory X-ray diffraction contrast tomography for grain structure characterization of pure iron.
    Lindkvist A; Fang H; Juul Jensen D; Zhang Y
    J Appl Crystallogr; 2021 Feb; 54(Pt 1):99-110. PubMed ID: 33833643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A flexible and standalone forward simulation model for laboratory X-ray diffraction contrast tomography.
    Fang H; Juul Jensen D; Zhang Y
    Acta Crystallogr A Found Adv; 2020 Nov; 76(Pt 6):652-663. PubMed ID: 33125349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for improving non-destructive grain mapping in 3D.
    Fang H; Hovad E; Zhang Y; Clemmensen LKH; Ersbøll BK; Juul Jensen D
    IUCrJ; 2021 Sep; 8(Pt 5):719-731. PubMed ID: 34584734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Laboratory Diffraction Contrast Tomography and Electron Backscatter Diffraction Results: Application to Naturally Occurring Chromites.
    Chen X; Godel B; Verrall M
    Microsc Microanal; 2023 Dec; 29(6):1901-1920. PubMed ID: 38064652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A laboratory-based Laue X-ray diffraction system for enhanced imaging range and surface grain mapping.
    Whitley W; Stock C; Huxley AD
    J Appl Crystallogr; 2015 Aug; 48(Pt 4):1342-1345. PubMed ID: 26306095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT).
    McDonald SA; Holzner C; Lauridsen EM; Reischig P; Merkle AP; Withers PJ
    Sci Rep; 2017 Jul; 7(1):5251. PubMed ID: 28701768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis.
    Ludwig W; Reischig P; King A; Herbig M; Lauridsen EM; Johnson G; Marrow TJ; Buffière JY
    Rev Sci Instrum; 2009 Mar; 80(3):033905. PubMed ID: 19334932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiences with CCD detectors on a home X-ray source.
    Muchmore SW
    Acta Crystallogr D Biol Crystallogr; 1999 Oct; 55(Pt 10):1669-771. PubMed ID: 10531515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postprocessing Workflow for Laboratory Diffraction Contrast Tomography: A Case Study on Chromite Geomaterials.
    Chen X; Godel B; Verrall M
    Microsc Microanal; 2024 Jul; 30(3):440-455. PubMed ID: 38701200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flat panel detector-based cone beam computed tomography with a circle-plus-two-arcs data acquisition orbit: preliminary phantom study.
    Ning R; Tang X; Conover D; Yu R
    Med Phys; 2003 Jul; 30(7):1694-705. PubMed ID: 12906186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup.
    Pacureanu A; Langer M; Boller E; Tafforeau P; Peyrin F
    Med Phys; 2012 Apr; 39(4):2229-38. PubMed ID: 22482644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting image properties in penalized-likelihood reconstructions of flat-panel CBCT.
    Wang W; Gang GJ; Siewerdsen JH; Stayman JW
    Med Phys; 2019 Jan; 46(1):65-80. PubMed ID: 30372536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical Note: Nuclear imaging with an x-ray flat panel detector: A proof-of-concept study.
    Dietze MMA; Koppert WJC; van Rooij R; de Jong HWAM
    Med Phys; 2020 Aug; 47(8):3363-3368. PubMed ID: 32314368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of X-ray CCD camera based X-ray micro-CT system.
    Sarkar PS; Ray NK; Pal MK; Baribaddala R; Agrawal A; Kashyap Y; Sinha A; Gadkari SC
    Rev Sci Instrum; 2017 Feb; 88(2):023702. PubMed ID: 28249518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A second-generation virtual-pinhole PET device for enhancing contrast recovery and improving lesion detectability of a whole-body PET/CT scanner.
    Jiang J; Li K; Wang Q; Puterbaugh K; Young JW; Siegel SB; O'Sullivan JA; Tai YC
    Med Phys; 2019 Sep; 46(9):4165-4176. PubMed ID: 31315157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone-beam breast computed tomography with a displaced flat panel detector array.
    Mettivier G; Russo P; Lanconelli N; Meo SL
    Med Phys; 2012 May; 39(5):2805-19. PubMed ID: 22559652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.