These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37284580)

  • 1. Editorial: Construction and biological applications of programmable DNA dynamic reactions.
    Li S; Cai R; Ding D; Ang EH; Lyu Y
    Front Chem; 2023; 11():1218742. PubMed ID: 37284580
    [No Abstract]   [Full Text] [Related]  

  • 2. Aptamer-Functionalized DNA Nanostructures for Biological Applications.
    Fu X; Peng F; Lee J; Yang Q; Zhang F; Xiong M; Kong G; Meng HM; Ke G; Zhang XB
    Top Curr Chem (Cham); 2020 Feb; 378(2):21. PubMed ID: 32030541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic and programmable self-assembly of micro-rafts at the air-water interface.
    Wang W; Giltinan J; Zakharchenko S; Sitti M
    Sci Adv; 2017 May; 3(5):e1602522. PubMed ID: 28560332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Polymerase-Directed Hairpin Assembly for Targeted Drug Delivery and Amplified Biosensing.
    Wang Y; Jiang LP; Zhou S; Bi S; Zhu JJ
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26532-26540. PubMed ID: 27690212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile CRISPR-Cas12a-Based Biosensing Platform Modulated with Programmable Entropy-Driven Dynamic DNA Networks.
    Wang C; Han C; Du X; Guo W
    Anal Chem; 2021 Sep; 93(38):12881-12888. PubMed ID: 34521192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled DNA origami-based duplexed aptasensors combined with centrifugal filters for efficient and rechargeable ATP detection.
    Wang X; Mao Z; Chen R; Li S; Ren S; Liang J; Gao Z
    Biosens Bioelectron; 2022 Sep; 211():114336. PubMed ID: 35623250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dynamic Control Center Based on a DNA Reaction Network for Programmable Building of DNA Nanostructures.
    Chen F; Wang D; He L; Liu Y; Du Y; Guo Z; He S; Wang Z; Zhang J; Lyu Y; Tan W
    ACS Nano; 2023 Apr; 17(7):6615-6626. PubMed ID: 36975098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Polymerization-like Kinetics for Programmable Self-Assembly of DNA-Encoded Nanoparticles with Limited Valence.
    Gu M; Ma X; Zhang L; Lin J
    J Am Chem Soc; 2019 Oct; 141(41):16408-16415. PubMed ID: 31553167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled DNA Tetrahedral Scaffolds for the Construction of Electrochemiluminescence Biosensor with Programmable DNA Cyclic Amplification.
    Feng QM; Guo YH; Xu JJ; Chen HY
    ACS Appl Mater Interfaces; 2017 May; 9(20):17637-17644. PubMed ID: 28471159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing.
    Bi S; Yue S; Wu Q; Ye J
    Biosens Bioelectron; 2016 Sep; 83():281-6. PubMed ID: 27132002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic colloidal nanoparticle assembly triggered by aptamer-receptor interactions on live cell membranes.
    Yang L; Meng L; Song J; Xiao Y; Wang R; Kang H; Han D
    Chem Sci; 2019 Aug; 10(31):7466-7471. PubMed ID: 31489169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybridization Chain Reaction Design and Biosensor Implementation.
    Miti A; Zuccheri G
    Methods Mol Biol; 2018; 1811():115-135. PubMed ID: 29926449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of DNA nanoparticles through multiple catalyzed hairpin assembly for enzyme-free nucleic acid amplified detection.
    He H; Dai J; Meng Y; Duan Z; Zhou C; Zheng B; Du J; Guo Y; Xiao D
    Talanta; 2018 Mar; 179():641-645. PubMed ID: 29310288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems.
    Rajwar A; Kharbanda S; Chandrasekaran AR; Gupta S; Bhatia D
    ACS Appl Bio Mater; 2020 Nov; 3(11):7265-7277. PubMed ID: 35019470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Biosensors with Dual Programmable Dynamic Ranges.
    Wei B; Zhang J; Ou X; Lou X; Xia F; Vallée-Bélisle A
    Anal Chem; 2018 Feb; 90(3):1506-1510. PubMed ID: 29300471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching the activity of Taq polymerase using clamp-like triplex aptamer structure.
    Hu Y; Wang Z; Chen Z; Pan L
    Nucleic Acids Res; 2020 Sep; 48(15):8591-8600. PubMed ID: 32644133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aptamer-Programmed DNA Nanodevices for Advanced, Targeted Cancer Theranostics.
    Walia S; Chandrasekaran AR; Chakraborty B; Bhatia D
    ACS Appl Bio Mater; 2021 Jul; 4(7):5392-5404. PubMed ID: 35006722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA nanoarchitectures: steps towards biological applications.
    Tintoré M; Eritja R; Fábrega C
    Chembiochem; 2014 Jul; 15(10):1374-90. PubMed ID: 24953971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal sulfide-functionalized DNA concatamer for ultrasensitive electronic monitoring of ATP using a programmable capillary-based aptasensor.
    Liu B; Zhang B; Chen G; Yang H; Tang D
    Biosens Bioelectron; 2014 Mar; 53():390-8. PubMed ID: 24201002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable DNA scaffolds for spatially-ordered protein assembly.
    Chandrasekaran AR
    Nanoscale; 2016 Feb; 8(8):4436-46. PubMed ID: 26852879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.