These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37284597)
1. Volatile responses of dwarf birch to mimicked insect herbivory and experimental warming at two elevations in Greenlandic tundra. Rieksta J; Li T; Davie-Martin CL; Aeppli LCB; Høye TT; Rinnan R Plant Environ Interact; 2023 Feb; 4(1):23-35. PubMed ID: 37284597 [TBL] [Abstract][Full Text] [Related]
2. Contrasting responses of major and minor volatile compounds to warming and gall-infestation in the Arctic willow Salix myrsinites. Swanson L; Li T; Rinnan R Sci Total Environ; 2021 Nov; 793():148516. PubMed ID: 34174616 [TBL] [Abstract][Full Text] [Related]
3. Amplification of plant volatile defence against insect herbivory in a warming Arctic tundra. Li T; Holst T; Michelsen A; Rinnan R Nat Plants; 2019 Jun; 5(6):568-574. PubMed ID: 31182843 [TBL] [Abstract][Full Text] [Related]
4. Synergistic effects of insect herbivory and changing climate on plant volatile emissions in the subarctic tundra. Rieksta J; Li T; Michelsen A; Rinnan R Glob Chang Biol; 2021 Oct; 27(20):5030-5042. PubMed ID: 34185349 [TBL] [Abstract][Full Text] [Related]
5. Seasonal and elevational variability in the induction of specialized compounds from mountain birch (Betula pubescens var. pumila) by winter moth larvae (Operophtera brumata). Ryde I; Li T; Rieksta J; Dos Santos BM; Neilson EHJ; Gericke O; Jepsen JU; Bork LRH; Holm HS; Rinnan R Tree Physiol; 2021 Jun; 41(6):1019-1033. PubMed ID: 33601421 [TBL] [Abstract][Full Text] [Related]
6. Impacts of elevation on plant traits and volatile organic compound emissions in deciduous tundra shrubs. Simin T; Davie-Martin CL; Petersen J; Høye TT; Rinnan R Sci Total Environ; 2022 Sep; 837():155783. PubMed ID: 35537508 [TBL] [Abstract][Full Text] [Related]
7. Volatile organic compounds emitted from silver birch of different provenances across a latitudinal gradient in Finland. Maja MM; Kasurinen A; Holopainen T; Kontunen-Soppela S; Oksanen E; Holopainen JK Tree Physiol; 2015 Sep; 35(9):975-86. PubMed ID: 26093370 [TBL] [Abstract][Full Text] [Related]
8. Contrasting responses of silver birch VOC emissions to short- and long-term herbivory. Maja MM; Kasurinen A; Yli-Pirilä P; Joutsensaari J; Klemola T; Holopainen T; Holopainen JK Tree Physiol; 2014 Mar; 34(3):241-52. PubMed ID: 24627262 [TBL] [Abstract][Full Text] [Related]
9. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
11. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity. Yli-Pirilä P; Copolovici L; Kännaste A; Noe S; Blande JD; Mikkonen S; Klemola T; Pulkkinen J; Virtanen A; Laaksonen A; Joutsensaari J; Niinemets Ü; Holopainen JK Environ Sci Technol; 2016 Nov; 50(21):11501-11510. PubMed ID: 27704791 [TBL] [Abstract][Full Text] [Related]
12. Flooding and Herbivory Interact to Alter Volatile Organic Compound Emissions in Two Maize Hybrids. Ngumbi EN; Ugarte CM J Chem Ecol; 2021 Jul; 47(7):707-718. PubMed ID: 34125370 [TBL] [Abstract][Full Text] [Related]
13. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. Dady ER; Kleczewski N; Ugarte CM; Ngumbi E J Chem Ecol; 2023 Dec; 49(11-12):710-724. PubMed ID: 37924424 [TBL] [Abstract][Full Text] [Related]
14. A genetically-based latitudinal cline in the emission of herbivore-induced plant volatile organic compounds. Wason EL; Agrawal AA; Hunter MD J Chem Ecol; 2013 Aug; 39(8):1101-11. PubMed ID: 23888386 [TBL] [Abstract][Full Text] [Related]
15. The effect of warming and enhanced ultraviolet radiation on gender-specific emissions of volatile organic compounds from European aspen. Maja MM; Kasurinen A; Holopainen T; Julkunen-Tiitto R; Holopainen JK Sci Total Environ; 2016 Mar; 547():39-47. PubMed ID: 26780130 [TBL] [Abstract][Full Text] [Related]
16. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring. Kozlov MV; Zverev V; Zvereva EL Sci Total Environ; 2017 Dec; 601-602():802-811. PubMed ID: 28578238 [TBL] [Abstract][Full Text] [Related]
17. Volatile-Mediated Signalling Between Potato Plants in Response to Insect Herbivory is not Contingent on Soil Nutrients. Martín-Cacheda L; Vázquez-González C; Rasmann S; Röder G; Abdala-Roberts L; Moreira X J Chem Ecol; 2023 Oct; 49(9-10):507-517. PubMed ID: 37460650 [TBL] [Abstract][Full Text] [Related]
18. Increasing shrub damage by invertebrate herbivores in the warming and drying tundra of West Greenland. Finger-Higgens R; DeSiervo M; Ayres MP; Virginia RA Oecologia; 2021 Apr; 195(4):995-1005. PubMed ID: 33786709 [TBL] [Abstract][Full Text] [Related]
19. Volatile organic compound emissions from Copolovici L; Kännaste A; Remmel T; Niinemets Ü Environ Exp Bot; 2014 Apr; 100():55-63. PubMed ID: 29367790 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous Impact of Rhizobacteria Inoculation and Leaf-Chewing Insect Herbivory on Essential Oil Production and VOC Emissions in Palermo TB; Cappellari LDR; Palermo JS; Giordano W; Banchio E Plants (Basel); 2024 Mar; 13(7):. PubMed ID: 38611463 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]