BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37284730)

  • 1.
    Lizarazo-Fonseca L; Correa-Araujo L; Prieto-Abello L; Camacho-Rodríguez B; Silva-Cote I
    Regen Ther; 2023 Dec; 24():11-24. PubMed ID: 37284730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineered skin constructs based on mesenchymal stromal cells and acellular dermal matrix exposed to inflammatory microenvironment releasing growth factors involved in skin repair.
    Correa-Araujo L; Prieto-Abello L; Lara-Bertrand A; Medina-Solano M; Guerrero L; Camacho B; Silva-Cote I
    Stem Cell Res Ther; 2023 Oct; 14(1):306. PubMed ID: 37880776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of topology of poly(L-lactide-co-ε-caprolactone) scaffolds on the response of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells and neuroblastoma cell lines.
    Thapsukhon B; Daranarong D; Meepowpan P; Suree N; Molloy R; Inthanon K; Wongkham W; Punyodom W
    J Biomater Sci Polym Ed; 2014 Jul; 25(10):1028-44. PubMed ID: 24856087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro interaction of human Wharton's jelly mesenchymal stem cells with biomimetic 3D scaffold.
    Jamalpoor Z; Taromi N; Soleimani M; Koudehi MF; Asgari A
    J Biomed Mater Res A; 2019 Jun; 107(6):1166-1175. PubMed ID: 30636089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton's jelly mesenchymal stem cells.
    Yang X; Qi Y; Avercenc-Leger L; Vincourt JB; Hupont S; Huselstein C; Wang H; Chen L; Magdalou J
    Biomed Mater Eng; 2017; 28(s1):S217-S228. PubMed ID: 28372298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing.
    Millán-Rivero JE; Martínez CM; Romecín PA; Aznar-Cervantes SD; Carpes-Ruiz M; Cenis JL; Moraleda JM; Atucha NM; García-Bernal D
    Stem Cell Res Ther; 2019 Apr; 10(1):126. PubMed ID: 31029166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun Scaffolds of Polylactic Acid, Collagen, and Amorphous Calcium Phosphate for Bone Repair.
    Cárdenas-Aguazaco W; Camacho B; Gómez-Pachón EY; Lara-Bertrand AL; Silva-Cote I
    Pharmaceutics; 2023 Oct; 15(11):. PubMed ID: 38004509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan-agarose scaffolds supports chondrogenesis of Human Wharton's Jelly mesenchymal stem cells.
    Merlin Rajesh Lal LP; Suraishkumar GK; Nair PD
    J Biomed Mater Res A; 2017 Jul; 105(7):1845-1855. PubMed ID: 28256803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human Wharton's jelly-derived mesenchymal stem cells alleviate concanavalin A-induced fulminant hepatitis by repressing NF-κB signaling and glycolysis.
    Pan L; Liu C; Liu Q; Li Y; Du C; Kang X; Dong S; Zhou Z; Chen H; Liang X; Chu J; Xu Y; Zhang Q
    Stem Cell Res Ther; 2021 Sep; 12(1):496. PubMed ID: 34503553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Decellularized Native Extracellular Matrix Scaffold for In Vitro Culture Expansion of Human Wharton's Jelly-Derived Mesenchymal Stem Cells (hWJ MSCs).
    Sundaram B; Cherian AG; Kumar S
    Methods Mol Biol; 2018; 1577():35-53. PubMed ID: 28963712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.
    Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V
    J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FGF-17 from Hypoxic Human Wharton's Jelly-Derived Mesenchymal Stem Cells Is Responsible for Maintenance of Cell Proliferation at Late Passages.
    Han KH; Kim MH; Jeong GJ; Kim AK; Chang JW; Kim DI
    Int J Stem Cells; 2019 Jul; 12(2):279-290. PubMed ID: 31022995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast transdifferentiation of human Wharton's jelly mesenchymal stem cells into neurospheres and nerve-like cells.
    Bonilla-Porras AR; Velez-Pardo C; Jimenez-Del-Rio M
    J Neurosci Methods; 2017 Apr; 282():52-60. PubMed ID: 28286110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun PCL/PLA Scaffolds Are More Suitable Carriers of Placental Mesenchymal Stromal Cells Than Collagen/Elastin Scaffolds and Prevent Wound Contraction in a Mouse Model of Wound Healing.
    Vonbrunn E; Mueller M; Pichlsberger M; Sundl M; Helmer A; Wallner SA; Rinner B; Tuca AC; Kamolz LP; Brislinger D; Glasmacher B; Lang-Olip I
    Front Bioeng Biotechnol; 2020; 8():604123. PubMed ID: 33425870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors.
    Lam AT; Li J; Toh JP; Sim EJ; Chen AK; Chan JK; Choolani M; Reuveny S; Birch WR; Oh SK
    Cytotherapy; 2017 Mar; 19(3):419-432. PubMed ID: 28017598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondrogenic differentiation of Wharton's Jelly mesenchymal stem cells on silk spidroin-fibroin mix scaffold supplemented with L-ascorbic acid and platelet rich plasma.
    Barlian A; Judawisastra H; Ridwan A; Wahyuni AR; Lingga ME
    Sci Rep; 2020 Nov; 10(1):19449. PubMed ID: 33173146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesenchymal Stromal Cells from the Maternal Segment of Human Umbilical Cord is Ideal for Bone Regeneration in Allogenic Setting.
    Lim J; Razi ZRM; Law JX; Nawi AM; Idrus RBH; Chin TG; Mustangin M; Ng MH
    Tissue Eng Regen Med; 2018 Feb; 15(1):75-87. PubMed ID: 30603536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, Nanomechanical Characterization and Biocompatibility of a Chitosan-Graft-Poly(ε-caprolactone) Copolymer for Soft Tissue Regeneration.
    Charitidis CA; Dragatogiannis DA; Milioni E; Kaliva M; Vamvakaki M; Chatzinikolaidou M
    Materials (Basel); 2019 Jan; 12(1):. PubMed ID: 30621234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing.
    Zhao G; Liu F; Lan S; Li P; Wang L; Kou J; Qi X; Fan R; Hao D; Wu C; Bai T; Li Y; Liu JY
    Stem Cell Res Ther; 2015 Mar; 6(1):38. PubMed ID: 25889402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of immunomodulatory properties of human Wharton's Jelly-derived mesenchymal stem cells after lentiviral transduction.
    Amari A; Ebtekar M; Moazzeni SM; Soleimani M; Amirabad LM; Tahoori MT; Massumi M
    Cell Immunol; 2015 Feb; 293(2):59-66. PubMed ID: 25569483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.