These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37284749)

  • 21. Refractive, biometric and corneal topographic parameter changes during 12 months of orthokeratology.
    Queirós A; Lopes-Ferreira D; Yeoh B; Issacs S; Amorim-De-Sousa A; Villa-Collar C; González-Méijome J
    Clin Exp Optom; 2020 Jul; 103(4):454-462. PubMed ID: 31694069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of Administration of 0.02% Atropine and Orthokeratology for Myopia Control.
    Lyu Y; Ji N; Fu AC; Wang WQ; Wei L; Qin J; Zhao BX
    Eye Contact Lens; 2021 Feb; 47(2):81-85. PubMed ID: 32443010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adjunctive effects of orthokeratology and atropine 0.01% eye drops on slowing the progression of myopia.
    Zhou H; Zhao G; Li Y
    Clin Exp Optom; 2022 Jul; 105(5):520-526. PubMed ID: 34228946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Benefits and risks of orthokeratology treatment: a systematic review and meta-analysis.
    Sartor L; Hunter DS; Vo ML; Samarawickrama C
    Int Ophthalmol; 2024 Jun; 44(1):239. PubMed ID: 38904856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of orthokeratology lens with 0.01% atropine in slowing axial elongation in children with myopia: a randomized double-blinded clinical trial.
    Yu S; Du L; Ji N; Li B; Pang X; Li X; Ma N; Huang C; Fu A
    BMC Ophthalmol; 2022 Nov; 22(1):438. PubMed ID: 36380280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of 0.01% atropine on ocular axial elongation for myopia children: A protocol for systematic review and meta-analysis.
    Gao Y; Yu Y
    Medicine (Baltimore); 2022 Jun; 101(22):e29409. PubMed ID: 35665735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pattern of Axial Length Growth in Children Myopic Anisometropes with Orthokeratology Treatment.
    Long W; Li Z; Hu Y; Cui D; Zhai Z; Yang X
    Curr Eye Res; 2020 Jul; 45(7):834-838. PubMed ID: 31821058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of orthokeratology lens on axial length elongation in unilateral myopia and bilateral myopia with anisometropia children.
    Fu AC; Qin J; Rong JB; Ji N; Wang WQ; Zhao BX; Lyu Y
    Cont Lens Anterior Eye; 2020 Feb; 43(1):73-77. PubMed ID: 31862203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of orthokeratology on axial length elongation in moderate myopic and fellow high myopic eyes of children.
    Yu LH; Jin WQ; Mao XJ; Jiang J
    Clin Exp Optom; 2021 Jan; 104(1):22-27. PubMed ID: 32266747
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of orthokeratology on anisometropia control: A meta-analysis.
    Tsai HR; Wang JH; Chiu CJ
    J Formos Med Assoc; 2021 Dec; 120(12):2120-2127. PubMed ID: 34119394
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contact Lens Methods for Clinical Myopia Control.
    Turnbull PR; Munro OJ; Phillips JR
    Optom Vis Sci; 2016 Sep; 93(9):1120-6. PubMed ID: 27564516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing the efficacy of myopia control in monocular orthokeratology treated unilateral myopic children.
    Chen Y; Zheng C; Zhu R; Dong L; Cen J; Yu J; Zhao P; Kang X
    BMC Ophthalmol; 2022 Dec; 22(1):499. PubMed ID: 36536320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Axial length shortening after orthokeratology and its relationship with myopic control.
    Wang A; Yang C; Shen L; Wang J; Zhang Z; Yang W
    BMC Ophthalmol; 2022 Jun; 22(1):243. PubMed ID: 35659643
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of myopia using orthokeratology lenses in Scandinavian children aged 6 to 12 years. Eighteen-month data from the Danish Randomized Study: Clinical study Of Near-sightedness; TReatment with Orthokeratology Lenses (CONTROL study).
    Jakobsen TM; Møller F
    Acta Ophthalmol; 2022 Mar; 100(2):175-182. PubMed ID: 34233094
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orthokeratology and Low-Intensity Laser Therapy for Slowing the Progression of Myopia in Children.
    Xiong F; Mao T; Liao H; Hu X; Shang L; Yu L; Lin N; Huang L; Yi Y; Zhou R; Zhou X; Yi J
    Biomed Res Int; 2021; 2021():8915867. PubMed ID: 33575355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in axial length after orthokeratology lens treatment for myopia: a meta-analysis.
    Guan M; Zhao W; Geng Y; Zhang Y; Ma J; Chen Z; Peng M; Li Y
    Int Ophthalmol; 2020 Jan; 40(1):255-265. PubMed ID: 31916062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical interventions for myopia control.
    Logan NS; Bullimore MA
    Eye (Lond); 2024 Feb; 38(3):455-463. PubMed ID: 37740053
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Role of Orthokeratology in Myopia Management.
    Lipson MJ
    Eye Contact Lens; 2022 May; 48(5):189-193. PubMed ID: 35333801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protective Role of Orthokeratology in Reducing Risk of Rapid Axial Elongation: A Reanalysis of Data From the ROMIO and TO-SEE Studies.
    Cho P; Cheung SW
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1411-1416. PubMed ID: 28253404
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Myopia prevention and control in children: a systematic review and network meta-analysis.
    Zhang G; Jiang J; Qu C
    Eye (Lond); 2023 Nov; 37(16):3461-3469. PubMed ID: 37106147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.