These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37284878)
1. High-throughput microbead assay system with a portable, cost-effective Wi-Fi imaging module, and disposable multi-layered microfluidic cartridges for virus and microparticle detection, and tracking. Castro JM; Sommerhage F; Khanna R; Childs A; DeRoo D; Rajaraman S Biomed Microdevices; 2023 Jun; 25(3):21. PubMed ID: 37284878 [TBL] [Abstract][Full Text] [Related]
2. High-throughput microbead assay system with a portable, cost-effective Wi-Fi imaging module, and disposable multi-layered microfluidic cartridges for virus and microparticle detection, and tracking. Castro JM; Sommerhage F; Khanna R; Childs A; DeRoo D; Rajaraman S Res Sq; 2022 Dec; ():. PubMed ID: 36597542 [TBL] [Abstract][Full Text] [Related]
3. Cellphone-Enabled Microwell-Based Microbead Aggregation Assay for Portable Biomarker Detection. Cui W; He M; Mu L; Lin Z; Wang Y; Pang W; Reed M; Duan X ACS Sens; 2018 Feb; 3(2):432-440. PubMed ID: 29350517 [TBL] [Abstract][Full Text] [Related]
4. Development of a Diagnostic Microfluidic Chip for SARS-CoV-2 Detection in Saliva and Nasopharyngeal Samples. Sharma S; Caputi M; Asghar W Viruses; 2024 Jul; 16(8):. PubMed ID: 39205164 [TBL] [Abstract][Full Text] [Related]
5. Simultaneous detection of multiple influenza virus subtypes based on microbead-encoded microfluidic chip. Hong SL; Wang X; Bao ZH; Zhang MF; Tang M; Zhang N; Liu H; Zhu ZY; Liu K; Chen ZL; Li W Anal Chim Acta; 2023 Oct; 1279():341773. PubMed ID: 37827673 [TBL] [Abstract][Full Text] [Related]
6. Handheld Microfluidic Filtration Platform Enables Rapid, Low-Cost, and Robust Self-Testing of SARS-CoV-2 Virus. Xu J; Suo W; Goulev Y; Sun L; Kerr L; Paulsson J; Zhang Y; Lao T Small; 2021 Dec; 17(52):e2104009. PubMed ID: 34845827 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics-Based Point-of-Care Testing (POCT) Devices in Dealing with Waves of COVID-19 Pandemic: The Emerging Solution. Kumar A; Parihar A; Panda U; Parihar DS ACS Appl Bio Mater; 2022 May; 5(5):2046-2068. PubMed ID: 35473316 [TBL] [Abstract][Full Text] [Related]
8. Recent developments in optical detection technologies in lab-on-a-chip devices for biosensing applications. Pires NM; Dong T; Hanke U; Hoivik N Sensors (Basel); 2014 Aug; 14(8):15458-79. PubMed ID: 25196161 [TBL] [Abstract][Full Text] [Related]
9. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells. Wang X; Liedert C; Liedert R; Papautsky I Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341 [TBL] [Abstract][Full Text] [Related]
10. A compact and integrated immunoassay with on-chip dispensing and magnetic particle handling. Zirath H; Peham JR; Schnetz G; Coll A; Brandhoff L; Spittler A; Vellekoop MJ; Redl H Biomed Microdevices; 2016 Feb; 18(1):16. PubMed ID: 26842948 [TBL] [Abstract][Full Text] [Related]
11. Nanomaterial-assisted microfluidics for multiplex assays. Wang Y; Gao Y; Yin Y; Pan Y; Wang Y; Song Y Mikrochim Acta; 2022 Mar; 189(4):139. PubMed ID: 35275267 [TBL] [Abstract][Full Text] [Related]
12. μPADs on Centrifugal Microfluidic Discs for Rapid Sample-to-Answer Salivary Diagnostics. Liu S; Hou Y; Li Z; Yang C; Liu G ACS Sens; 2023 Sep; 8(9):3520-3529. PubMed ID: 37669403 [TBL] [Abstract][Full Text] [Related]
13. Microfluidics for COVID-19: From Current Work to Future Perspective. Li Q; Zhou X; Wang Q; Liu W; Chen C Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930 [TBL] [Abstract][Full Text] [Related]
14. A fully automated microfluidic PCR-array system for rapid detection of multiple respiratory tract infection pathogens. Huang E; Wang Y; Yang N; Shu B; Zhang G; Liu D Anal Bioanal Chem; 2021 Mar; 413(7):1787-1798. PubMed ID: 33492406 [TBL] [Abstract][Full Text] [Related]
15. iso-μmGene: an isothermal amplification-based portable microfluidic system for simple, reliable and flexibly multiplexed genetic identification and quantification. Zhong R; Liu S; Zhang G; Wang M; Sun Y Analyst; 2020 Jul; 145(13):4627-4636. PubMed ID: 32458852 [TBL] [Abstract][Full Text] [Related]
16. Development of a self-contained microfluidic chip and an internet-of-things-based point-of-care device for automated identification of respiratory viruses. Nguyen HQ; Nguyen VD; Phan VM; Seo TS Lab Chip; 2024 Apr; 24(9):2485-2496. PubMed ID: 38587207 [TBL] [Abstract][Full Text] [Related]
17. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers. Hu B; Li J; Mou L; Liu Y; Deng J; Qian W; Sun J; Cha R; Jiang X Lab Chip; 2017 Jun; 17(13):2225-2234. PubMed ID: 28573279 [TBL] [Abstract][Full Text] [Related]
18. Multiplex and on-site PCR detection of swine diseases based on the microfluidic chip system. Jiang Y; Jiang S; Wu Y; Zhou B; Wang K; Jiang L; Long Y; Chen G; Zeng D BMC Vet Res; 2021 Mar; 17(1):117. PubMed ID: 33712000 [TBL] [Abstract][Full Text] [Related]
19. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. Smith S; Sypabekova M; Kim S Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723 [TBL] [Abstract][Full Text] [Related]
20. Dielectrophoretic microbead sorting using modular electrode design and capillary-driven microfluidics. Tirapu-Azpiroz J; Temiz Y; Delamarche E Biomed Microdevices; 2017 Oct; 19(4):95. PubMed ID: 29082438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]