These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 37284878)

  • 21. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid parallel generation of a fluorescently barcoded drop library from a microtiter plate using the plate-interfacing parallel encapsulation (PIPE) chip.
    Zath GK; Sperling RA; Hoffman CW; Bikos DA; Abbasi R; Abate AR; Weitz DA; Chang CB
    Lab Chip; 2022 Nov; 22(23):4735-4745. PubMed ID: 36367139
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid Manufacturing of Multilayered Microfluidic Devices for Organ on a Chip Applications.
    Paoli R; Di Giuseppe D; Badiola-Mateos M; Martinelli E; Lopez-Martinez MJ; Samitier J
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33669434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasensitive immunoassay for detection of Citrus tristeza virus in citrus sample using disposable microfluidic electrochemical device.
    Freitas TA; Proença CA; Baldo TA; Materón EM; Wong A; Magnani RF; Faria RC
    Talanta; 2019 Dec; 205():120110. PubMed ID: 31450419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advancing Microfluidic Immunity Testing Systems: New Trends for Microbial Pathogen Detection.
    Wang Y; Chen J; Zhang Y; Yang Z; Zhang K; Zhang D; Zheng L
    Molecules; 2024 Jul; 29(14):. PubMed ID: 39064900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic point-of-care device for detection of early strains and B.1.1.7 variant of SARS-CoV-2 virus.
    Lim J; Stavins R; Kindratenko V; Baek J; Wang L; White K; Kumar J; Valera E; King WP; Bashir R
    Lab Chip; 2022 Mar; 22(7):1297-1309. PubMed ID: 35244660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic chip coupled with optical biosensors for simultaneous detection of multiple analytes: A review.
    Liao Z; Zhang Y; Li Y; Miao Y; Gao S; Lin F; Deng Y; Geng L
    Biosens Bioelectron; 2019 Feb; 126():697-706. PubMed ID: 30544083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A real-time isothermal amplification based portable microfluidic system for simple and reliable detection of
    Zhong R; Liu S; Wang X; Zhang G; Gong N; Wang M; Sun Y
    Anal Methods; 2020 Jun; 12(23):2985-2994. PubMed ID: 32930158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of digital microfluidics as portable platforms for lab-on a-chip applications.
    Samiei E; Tabrizian M; Hoorfar M
    Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Performance Optimization of a Microfluidic Virus Detection Cartridge: A Numerical and Experimental Study.
    Şenel EB; Kizilelma B; Tamdoğan E; Yorulmaz M
    J Biomech Eng; 2023 Oct; 145(10):. PubMed ID: 37382621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches.
    Dalili A; Samiei E; Hoorfar M
    Analyst; 2018 Dec; 144(1):87-113. PubMed ID: 30402633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing.
    Sochol RD; Li S; Lee LP; Lin L
    Lab Chip; 2012 Oct; 12(20):4168-77. PubMed ID: 22875202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single layer linear array of microbeads for multiplexed analysis of DNA and proteins.
    Yue W; Zou H; Jin Q; Li CW; Xu T; Fu H; Tzang LC; Sun H; Zhao J; Yang M
    Biosens Bioelectron; 2014 Apr; 54():297-305. PubMed ID: 24287420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immuno-biosensor on a chip: a self-powered microfluidic-based electrochemical biosensing platform for point-of-care quantification of proteins.
    Haghayegh F; Salahandish R; Zare A; Khalghollah M; Sanati-Nezhad A
    Lab Chip; 2021 Dec; 22(1):108-120. PubMed ID: 34860233
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Full integration of nucleic acid extraction and detection into a centrifugal microfluidic chip employing chitosan-modified microspheres.
    Zhao X; Huang Y; Li X; Yang W; Lv Y; Sun W; Huang J; Mi S
    Talanta; 2022 Dec; 250():123711. PubMed ID: 35809491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.