These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 37285100)

  • 1. A Cysteine-Directed Proximity-Driven Crosslinking Method for Native Peptide Bicyclization.
    Chen FJ; Pinnette N; Yang F; Gao J
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306813. PubMed ID: 37285100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for the Construction of Multicyclic Phage Display Libraries.
    Chen FJ; Pinnette N; Gao J
    Chembiochem; 2024 May; 25(9):e202400072. PubMed ID: 38466139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diazaborine-Mediated Bicyclization of Native Peptides with Inducible Reversibility.
    Reja RM; Chau B; Gao J
    Org Lett; 2023 Jun; 25(24):4489-4492. PubMed ID: 37306633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Wang XS; Chen PC; Hampton JT; Tharp JM; Reed CA; Das SK; Wang DS; Hayatshahi HS; Shen Y; Liu J; Liu WR
    Angew Chem Int Ed Engl; 2019 Oct; 58(44):15904-15909. PubMed ID: 31398275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K; Kong XD; Heinis C
    Acc Chem Res; 2017 Aug; 50(8):1866-1874. PubMed ID: 28719188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homodimeric peptides displayed by the major coat protein of filamentous phage.
    Zwick MB; Shen J; Scott JK
    J Mol Biol; 2000 Jul; 300(2):307-20. PubMed ID: 10873467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Construction of a Genetically Encoded, Phage-Displayed Cyclic-Peptide Library.
    Chen PC; Liu WR
    Methods Mol Biol; 2021; 2355():219-230. PubMed ID: 34386961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display.
    Zheng M; Haeffner F; Gao J
    Chem Sci; 2022 Jul; 13(28):8349-8354. PubMed ID: 35919713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Cysteine-Specific Modification of Peptides, Proteins and Bacteriophage Using Chlorooximes.
    Chen FJ; Zheng M; Nobile V; Gao J
    Chemistry; 2022 Apr; 28(20):e202200058. PubMed ID: 35167137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation.
    Yin Y; Fei Q; Liu W; Li Z; Suga H; Wu C
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4880-4885. PubMed ID: 30762292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Peptide-Bismuth Bicycles Using Phage Display.
    He RN; Zhang MJ; Dai B; Kong XD
    ACS Chem Biol; 2024 May; 19(5):1040-1044. PubMed ID: 38620022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemoselective Peptide Cyclization and Bicyclization Directly on Unprotected Peptides.
    Zhang Y; Zhang Q; Wong CTT; Li X
    J Am Chem Soc; 2019 Aug; 141(31):12274-12279. PubMed ID: 31314512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display.
    Wan XC; Zhang YN; Zhang H; Chen Y; Cui ZH; Zhu WJ; Fang GM
    Org Lett; 2024 Apr; 26(13):2601-2605. PubMed ID: 38529932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOrPH-PhD: A Phage Display System for the Functional Selection of Genetically Encoded Macrocyclic Peptides.
    Gu Y; Iannuzzelli JA; Fasan R
    Methods Mol Biol; 2022; 2371():261-286. PubMed ID: 34596853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switching Between Bicyclic and Linear Peptides - The Sulfhydryl-Specific Linker TPSMB Enables Reversible Cyclization of Peptides.
    Ernst C; Heidrich J; Sessler C; Sindlinger J; Schwarzer D; Koch P; Boeckler FM
    Front Chem; 2018; 6():484. PubMed ID: 30386769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phage selection of bicyclic peptides based on two disulfide bridges.
    Chen S; Heinis C
    Methods Mol Biol; 2015; 1248():119-37. PubMed ID: 25616330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Strategy to Select Macrocyclic Peptides Featuring Asymmetric Molecular Scaffolds as Cyclization Units by Phage Display.
    Oppewal TR; Jansen ID; Hekelaar J; Mayer C
    J Am Chem Soc; 2022 Mar; 144(8):3644-3652. PubMed ID: 35171585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetically-encoded discovery of proteolytically stable bicyclic inhibitors for morphogen NODAL.
    Wong JY; Mukherjee R; Miao J; Bilyk O; Triana V; Miskolzie M; Henninot A; Dwyer JJ; Kharchenko S; Iampolska A; Volochnyuk DM; Lin YS; Postovit LM; Derda R
    Chem Sci; 2021 Jul; 12(28):9694-9703. PubMed ID: 34349940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and efficient maleimide-based approach for peptide extension with a cysteine-containing peptide phage library.
    Santoso B; Lam S; Murray BW; Chen G
    Bioorg Med Chem Lett; 2013 Oct; 23(20):5680-3. PubMed ID: 23992863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-translational modification of genetically encoded polypeptide libraries.
    Angelini A; Heinis C
    Curr Opin Chem Biol; 2011 Jun; 15(3):355-61. PubMed ID: 21489857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.