These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37285687)

  • 1. Measurement of dielectric function and bandgap of germanium telluride using monochromated electron energy-loss spectroscopy.
    Oh JS; Jo KJ; Kang MC; An BS; Kwon Y; Lim HW; Cho MH; Baik H; Yang CW
    Micron; 2023 Sep; 172():103487. PubMed ID: 37285687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrieving the energy-loss function from valence electron energy-loss spectrum: Separation of bulk-, surface-losses and Cherenkov radiation.
    Meng Q; Wu L; Xin HL; Zhu Y
    Ultramicroscopy; 2018 Nov; 194():175-181. PubMed ID: 30149218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bandgap measurement of thin dielectric films using monochromated STEM-EELS.
    Park J; Heo S; Chung JG; Kim H; Lee H; Kim K; Park GS
    Ultramicroscopy; 2009 Aug; 109(9):1183-8. PubMed ID: 19515492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium-ceria case.
    Bowman WJ; March K; Hernandez CA; Crozier PA
    Ultramicroscopy; 2016 Aug; 167():5-10. PubMed ID: 27152715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of valence electron energy-loss spectra of aluminium nitride.
    Dorneich AD; French RH; Müllejans H; Loughin S; Rühle M
    J Microsc; 1998 Sep; 191(3):286-296. PubMed ID: 9767493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis.
    Stöger-Pollach M; Franco H; Schattschneider P; Lazar S; Schaffer B; Grogger W; Zandbergen HW
    Micron; 2006; 37(5):396-402. PubMed ID: 16551502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.
    Liu Q; March K; Crozier PA
    Ultramicroscopy; 2017 Jul; 178():2-11. PubMed ID: 27432780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials.
    Alexander JA; Scheltens FJ; Drummy LF; Durstock MF; Hage FS; Ramasse QM; McComb DW
    Ultramicroscopy; 2017 Sep; 180():125-132. PubMed ID: 28284703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantages of a monochromator for bandgap measurements using electron energy-loss spectroscopy.
    Kimoto K; Kothleitner G; Grogger W; Matsui Y; Hofer F
    Micron; 2005; 36(2):185-9. PubMed ID: 15629650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS).
    Wang YY; Jin Q; Zhuang K; Choi JK; Nxumalo J
    Ultramicroscopy; 2021 Jan; 220():113164. PubMed ID: 33186852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling electronic band structure of narrow-bandgap p-n nanojunctions in heterostructured nanowires.
    Zamani RR; Hage FS; Eljarrat A; Namazi L; Ramasse QM; Dick KA
    Phys Chem Chem Phys; 2021 Nov; 23(44):25019-25023. PubMed ID: 34730587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valence electron energy-loss spectroscopy study of ZrSiO₄ and ZrO₂.
    Jiang N; Spence JC
    Ultramicroscopy; 2013 Nov; 134():68-76. PubMed ID: 23916829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of the electronic structure of carbon films using electron energy loss spectroscopy.
    Alexandro I; Papworth AJ; Rafferty B; Amaratunga GAJ ; Kiely CJ; Brown LM
    Ultramicroscopy; 2001 Nov; 90(1):39-45. PubMed ID: 11794628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandgap measurement of high refractive index materials by off-axis EELS.
    Vatanparast M; Egoavil R; Reenaas TW; Verbeeck J; Holmestad R; Vullum PE
    Ultramicroscopy; 2017 Nov; 182():92-98. PubMed ID: 28666140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium.
    Poursoti Z; Sun W; Bharadwaj S; Malac M; Iyer S; Khosravi F; Cui K; Qi L; Nazemifard N; Jagannath R; Rahman R; Jacob Z
    Opt Express; 2022 Apr; 30(8):12630-12638. PubMed ID: 35472896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoelectronic properties of InAlN/GaN distributed bragg reflector heterostructure examined by valence electron energy loss spectroscopy.
    Eljarrat A; Estradé S; Gačević Z; Fernández-Garrido S; Calleja E; Magén C; Peiró F
    Microsc Microanal; 2012 Oct; 18(5):1143-54. PubMed ID: 23058502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward 10 meV electron energy-loss spectroscopy resolution for plasmonics.
    Bellido EP; Rossouw D; Botton GA
    Microsc Microanal; 2014 Jun; 20(3):767-78. PubMed ID: 24690472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.