These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37285698)

  • 1. A 3D-printed SERS bionic taster for dynamic tumor metabolites detection.
    Wu L; Chen L; Qian Z; Wang T; Dong Q; Zhang Y; Zong S; Cui Y; Wang Z
    Talanta; 2023 Nov; 264():124766. PubMed ID: 37285698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity-Based Self-Enriched SERS Sensor for Blood Metabolite Monitoring.
    Cai C; Liu Y; Zhang Z; Tian T; Wang Y; Wang L; Zhang K; Liu B
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):4895-4902. PubMed ID: 36688934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SERS-Active Printable Hydrogel for 3D Cell Culture and Imaging.
    Wang W; Vikesland PJ
    Anal Chem; 2023 Dec; 95(49):18055-18064. PubMed ID: 37934619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel bionic magnetic SERS aptasensor for the ultrasensitive detection of Deoxynivalenol based on "dual antennae" nano-silver.
    Zhao X; Shen H; Huo B; Wang Y; Gao Z
    Biosens Bioelectron; 2022 Sep; 211():114383. PubMed ID: 35609454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemically renewable SERS sensor: A new platform for the detection of metabolites involved in peroxide production.
    Jiang L; Wang L; Zhan DS; Jiang WR; Fodjo EK; Hafez ME; Zhang YM; Zhao H; Qian RC; Li DW
    Biosens Bioelectron; 2021 Mar; 175():112918. PubMed ID: 33383430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Scaffold-Assisted 3D Cancer Cell Model for Surface-Enhanced Raman Scattering-Based Real-Time Sensing and Imaging.
    García-Astrain C; Henriksen-Lacey M; Lenzi E; Renero-Lecuna C; Langer J; Piñeiro P; Molina-Martínez B; Plou J; Jimenez de Aberasturi D; Liz-Marzán LM
    ACS Nano; 2024 Apr; 18(17):11257-11269. PubMed ID: 38632933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ dynamic measurements of the enhanced SERS signal using an optoelectrofluidic SERS platform.
    Hwang H; Han D; Oh YJ; Cho YK; Jeong KH; Park JK
    Lab Chip; 2011 Aug; 11(15):2518-25. PubMed ID: 21674105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-Free Detection of Multiplexed Metabolites at Single-Cell Level via a SERS-Microfluidic Droplet Platform.
    Sun D; Cao F; Tian Y; Li A; Xu W; Chen Q; Shi W; Xu S
    Anal Chem; 2019 Dec; 91(24):15484-15490. PubMed ID: 31751515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch fabrication of disposable screen printed SERS arrays.
    Qu LL; Li DW; Xue JQ; Zhai WL; Fossey JS; Long YT
    Lab Chip; 2012 Mar; 12(5):876-81. PubMed ID: 22173817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways.
    Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S
    Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection.
    Li J; Yan H; Tan X; Lu Z; Han H
    Anal Chem; 2019 Mar; 91(6):3885-3892. PubMed ID: 30793591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method.
    Lin M; Wang Y; Sun X; Wang W; Chen L
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging.
    Lenzi E; Jimenez de Aberasturi D; Henriksen-Lacey M; Piñeiro P; Muniz AJ; Lahann J; Liz-Marzán LM
    ACS Appl Mater Interfaces; 2022 May; 14(18):20708-20719. PubMed ID: 35487502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-Printed Bionic Ear for Sound Identification and Localization Based on In Situ Polling of PVDF-TrFE Film.
    Yang C; Xiang Y; Liao B; Hu X
    Macromol Biosci; 2023 Feb; 23(2):e2200374. PubMed ID: 36408815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly sensitive and flexible inkjet printed SERS sensors on paper.
    Hoppmann EP; Yu WW; White IM
    Methods; 2013 Oct; 63(3):219-24. PubMed ID: 23872057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D-printed phantoms for characterizing SERS nanoparticle detectability in turbid media.
    Fales AM; Strobbia P; Vo-Dinh T; Ilev IK; Pfefer TJ
    Analyst; 2020 Sep; 145(18):6045-6053. PubMed ID: 32766656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monodispersed silver-gold nanorods controllable etching for ultrasensitive SERS detection of hydrogen peroxide-involved metabolites.
    Zhang R; Zhong Q; Liu Y; Ji J; Liu B
    Talanta; 2022 Jun; 243():123382. PubMed ID: 35303552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous, Label-Free and High-throughput SERS Detection of Multiple Pesticides on Ag@Three-Dimensional Silica Photonic Microsphere Array.
    Xu R; Dai S; Dou M; Yang J; Wang X; Liu X; Wei C; Li Q; Li J
    J Agric Food Chem; 2023 Feb; 71(6):3050-3059. PubMed ID: 36734836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals.
    Wu W; Liu L; Dai Z; Liu J; Yang S; Zhou L; Xiao X; Jiang C; Roy VA
    Sci Rep; 2015 May; 5():10208. PubMed ID: 25974125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Visualization and SERS Monitoring of the Interaction between Tumor and Endothelial Cells Using 3D Microfluidic Networks.
    Qian Z; Fei J; Zong S; Yang K; Li L; Liu R; Wang Z; Cui Y
    ACS Sens; 2020 Jan; 5(1):208-216. PubMed ID: 31885254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.