BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37285780)

  • 1. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years.
    Wakeling JM; Febrer-Nafría M; De Groote F
    J Biomech; 2023 Jun; 155():111657. PubMed ID: 37285780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force.
    Biewener AA; Wakeling JM; Lee SS; Arnold AS
    Integr Comp Biol; 2014 Dec; 54(6):1072-83. PubMed ID: 24928073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Hill-type musculotendon models with activation-force-length coupling.
    Sun L; Sun Y; Huang Z; Hou J; Wu J
    Technol Health Care; 2018; 26(6):909-920. PubMed ID: 29914041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the validity of Hill and Huxley muscle-tendon complex models using experimental data obtained from rat m. soleus in situ.
    Lemaire KK; Baan GC; Jaspers RT; van Soest AJ
    J Exp Biol; 2016 Apr; 219(Pt 7):977-87. PubMed ID: 26896546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle-tendon unit scaling methods of Hill-type musculoskeletal models: An overview.
    Heinen F; Lund ME; Rasmussen J; de Zee M
    Proc Inst Mech Eng H; 2016 Oct; 230(10):976-84. PubMed ID: 27459500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical instability of Hill-type muscle models.
    Yeo SH; Verheul J; Herzog W; Sueda S
    J R Soc Interface; 2023 Feb; 20(199):20220430. PubMed ID: 36722069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modelling approach for exploring muscle dynamics during cyclic contractions.
    Ross SA; Nigam N; Wakeling JM
    PLoS Comput Biol; 2018 Apr; 14(4):e1006123. PubMed ID: 29659583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Static versus dynamic muscle modelling in extinct species: a biomechanical case study of the
    Wiseman ALA; Charles JP; Hutchinson JR
    PeerJ; 2024; 12():e16821. PubMed ID: 38313026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculotendon Parameters in Lower Limb Models: Simplifications, Uncertainties, and Muscle Force Estimation Sensitivity.
    Chen Z; Franklin DW
    Ann Biomed Eng; 2023 Jun; 51(6):1147-1164. PubMed ID: 36913088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and Simulation of Biomechanical Model of Human Hip Joint Muscle-Tendon Assisted by Elastic External Tendon by Hill Muscle Model.
    Luo X; Cai G; Ma K; Cai A
    Comput Intell Neurosci; 2022; 2022():1987345. PubMed ID: 35958782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Huxley-type cross-bridge models in largeish-scale musculoskeletal models; an evaluation of computational cost.
    van Soest AJK; Casius LJR; Lemaire KK
    J Biomech; 2019 Jan; 83():43-48. PubMed ID: 30554816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Classifying muscle parameters with artificial neural networks and simulated lateral pinch data.
    Kearney KM; Harley JB; Nichols JA
    PLoS One; 2021; 16(9):e0255103. PubMed ID: 34473706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinearities make a difference: comparison of two common Hill-type models with real muscle.
    Siebert T; Rode C; Herzog W; Till O; Blickhan R
    Biol Cybern; 2008 Feb; 98(2):133-43. PubMed ID: 18049823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of biophysical muscle properties on simulating fast human arm movements.
    Bayer A; Schmitt S; Günther M; Haeufle DFB
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):803-821. PubMed ID: 28387534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Methods for Predicting Movement Biomechanics Based Upon Optimal Control Theory with Implementation in OpenSim.
    Porsa S; Lin YC; Pandy MG
    Ann Biomed Eng; 2016 Aug; 44(8):2542-2557. PubMed ID: 26715209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gauging force by tapping tendons.
    Martin JA; Brandon SCE; Keuler EM; Hermus JR; Ehlers AC; Segalman DJ; Allen MS; Thelen DG
    Nat Commun; 2018 Apr; 9(1):1592. PubMed ID: 29686281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical behavior of muscle-tendon complex during dynamic human movements.
    Fukashiro S; Hay DC; Nagano A
    J Appl Biomech; 2006 May; 22(2):131-47. PubMed ID: 16871004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.