These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37285780)

  • 21. Imaging-based musculoskeletal models alter muscle and joint contact forces but do not improve the agreement with experimentally measured electromyography signals in children with cerebral palsy.
    Kainz H; Jonkers I
    Gait Posture; 2023 Feb; 100():91-95. PubMed ID: 36502666
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement.
    Hicks JL; Uchida TK; Seth A; Rajagopal A; Delp SL
    J Biomech Eng; 2015 Feb; 137(2):020905. PubMed ID: 25474098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of an elastic tendon on the force producing capabilities of a muscle during dynamic movements.
    Domire ZJ; Challis JH
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):337-41. PubMed ID: 17852179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can a reduction approach predict reliable joint contact and musculo-tendon forces?
    Dumas R; Barré A; Moissenet F; Aissaoui R
    J Biomech; 2019 Oct; 95():109329. PubMed ID: 31522745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models.
    Lee SS; Arnold AS; Miara Mde B; Biewener AA; Wakeling JM
    J Biomech; 2013 Sep; 46(13):2288-95. PubMed ID: 23871235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait.
    Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL
    IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates.
    Perreault EJ; Heckman CJ; Sandercock TG
    J Biomech; 2003 Feb; 36(2):211-8. PubMed ID: 12547358
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mathematical model characterising Achilles tendon dynamics in flexion.
    Chatzistefani N; Chappell MJ; Hutchinson C; Kletzenbauer S; Evans ND
    Math Biosci; 2017 Feb; 284():92-102. PubMed ID: 27833002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gradient-based optimization with B-splines on sparse grids for solving forward-dynamics simulations of three-dimensional, continuum-mechanical musculoskeletal system models.
    Valentin J; Sprenger M; Pflüger D; Röhrle O
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2965. PubMed ID: 29427559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subject-specific tendon-aponeurosis definition in Hill-type model predicts higher muscle forces in dynamic tasks.
    Gerus P; Rao G; Berton E
    PLoS One; 2012; 7(8):e44406. PubMed ID: 22952973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Performances of hill-type and neural network muscle models-toward a myosignal-based exoskeleton.
    Rosen J; Fuchs MB; Arcan M
    Comput Biomed Res; 1999 Oct; 32(5):415-39. PubMed ID: 10529300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.
    O'Neill MC; Lee LF; Larson SG; Demes B; Stern JT; Umberger BR
    J Exp Biol; 2013 Oct; 216(Pt 19):3709-23. PubMed ID: 24006347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Muscle contraction history: modified Hill versus an exponential decay model.
    Ettema GJ; Meijer K
    Biol Cybern; 2000 Dec; 83(6):491-500. PubMed ID: 11130582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic prediction of tongue muscle activations using a finite element model.
    Stavness I; Lloyd JE; Fels S
    J Biomech; 2012 Nov; 45(16):2841-8. PubMed ID: 23021611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A three-dimensional biomechanical evaluation of quadriceps and hamstrings function using electrical stimulation.
    Hunter BV; Thelen DG; Dhaher YY
    IEEE Trans Neural Syst Rehabil Eng; 2009 Apr; 17(2):167-75. PubMed ID: 19193516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mass-flowing muscle model with shape restrictive soft tissues: correlation with sonoelastography.
    Guo J; Sun Y; Hao Y; Cui L; Ren G
    Biomech Model Mechanobiol; 2020 Jun; 19(3):911-926. PubMed ID: 31853723
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A physiologically enhanced muscle spindle model: using a Hill-type model for extrafusal fibers as template for intrafusal fibers.
    Chacon PFS; Hammer M; Wochner I; Walter JR; Schmitt S
    Comput Methods Biomech Biomed Engin; 2023 Dec; ():1-20. PubMed ID: 38126259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMG-Driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-Tendon Parameters of the Knee Joint Actuators.
    Falisse A; Van Rossom S; Jonkers I; De Groote F
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2253-2262. PubMed ID: 27875132
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and verification of a physiologically motivated internal controller for the open-source extended Hill-type muscle model in LS-DYNA.
    Martynenko OV; Kempter F; Kleinbach C; Nölle LV; Lerge P; Schmitt S; Fehr J
    Biomech Model Mechanobiol; 2023 Dec; 22(6):2003-2032. PubMed ID: 37542621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.