These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
466 related articles for article (PubMed ID: 37285848)
1. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction. Xiao Y; Chen C; Wang L; Yu J; Fu X; Zou Y; Lin Z; Wang K Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37285848 [No Abstract] [Full Text] [Related]
2. MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network. U N; P M A Magn Reson Imaging; 2024 Jul; 110():195-209. PubMed ID: 38653336 [TBL] [Abstract][Full Text] [Related]
3. Super-Resolution Reconstruction of CT Images Based on Multi-scale Information Fused Generative Adversarial Networks. Liu X; Su S; Gu W; Yao T; Shen J; Mo Y Ann Biomed Eng; 2024 Jan; 52(1):57-70. PubMed ID: 38064116 [TBL] [Abstract][Full Text] [Related]
4. Fast single image super-resolution using estimated low-frequency k-space data in MRI. Luo J; Mou Z; Qin B; Li W; Yang F; Robini M; Zhu Y Magn Reson Imaging; 2017 Jul; 40():1-11. PubMed ID: 28366758 [TBL] [Abstract][Full Text] [Related]
5. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network. Cui J; Gong K; Han P; Liu H; Li Q Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390 [TBL] [Abstract][Full Text] [Related]
6. Super-resolution of cardiac magnetic resonance images using Laplacian Pyramid based on Generative Adversarial Networks. Zhao M; Liu X; Liu H; Wong KKL Comput Med Imaging Graph; 2020 Mar; 80():101698. PubMed ID: 31935666 [TBL] [Abstract][Full Text] [Related]
7. A hybrid convolutional neural network for super-resolution reconstruction of MR images. Zheng Y; Zhen B; Chen A; Qi F; Hao X; Qiu B Med Phys; 2020 Jul; 47(7):3013-3022. PubMed ID: 32201956 [TBL] [Abstract][Full Text] [Related]
8. Deep learning in computed tomography super resolution using multi-modality data training. Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365 [TBL] [Abstract][Full Text] [Related]
9. Low-Dose CT Image Super-resolution Network with Noise Inhibition Based on Feedback Feature Distillation Mechanism. Chi J; Wei X; Sun Z; Yang Y; Yang B J Imaging Inform Med; 2024 Aug; 37(4):1902-1921. PubMed ID: 38378965 [TBL] [Abstract][Full Text] [Related]
10. Super-resolution of Pneumocystis carinii pneumonia CT via self-attention GAN. Xie H; Zhang T; Song W; Wang S; Zhu H; Zhang R; Zhang W; Yu Y; Zhao Y Comput Methods Programs Biomed; 2021 Nov; 212():106467. PubMed ID: 34715519 [TBL] [Abstract][Full Text] [Related]
11. [Medical image super-resolution reconstruction via multi-scale information distillation network under multi-scale geometric transform domain]. Wang H; Sun T Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Oct; 39(5):887-896. PubMed ID: 36310477 [TBL] [Abstract][Full Text] [Related]
12. Texture transformer super-resolution for low-dose computed tomography. Zhou S; Yu L; Jin M Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36301699 [TBL] [Abstract][Full Text] [Related]
13. Clinical ultra-high resolution CT scans enabled by using a generative adversarial network. Sun Y; Pan B; Li Q; Wang J; Wang X; Chen H; Cao Q; Liu H; Feng T; Sun H; Xiao Y; Gong NJ Med Phys; 2023 Jun; 50(6):3612-3622. PubMed ID: 36542389 [TBL] [Abstract][Full Text] [Related]
14. Dual U-Net residual networks for cardiac magnetic resonance images super-resolution. Qiu D; Cheng Y; Wang X Comput Methods Programs Biomed; 2022 May; 218():106707. PubMed ID: 35255374 [TBL] [Abstract][Full Text] [Related]
15. A Deep Learning Framework for Cardiac MR Under-Sampled Image Reconstruction with a Hybrid Spatial and Al-Haidri W; Matveev I; Al-Antari MA; Zubkov M Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980428 [TBL] [Abstract][Full Text] [Related]
16. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model. Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585 [TBL] [Abstract][Full Text] [Related]
17. Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision. Gu X; Zhang Y; Zeng W; Zhong S; Wang H; Liang D; Li Z; Hu Z Comput Methods Programs Biomed; 2023 Jul; 237():107571. PubMed ID: 37156020 [TBL] [Abstract][Full Text] [Related]
18. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Zhao M; Wei Y; Wong KKL Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953 [TBL] [Abstract][Full Text] [Related]
19. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586 [TBL] [Abstract][Full Text] [Related]
20. FNSAM: Image super-resolution using a feedback network with self-attention mechanism. Huang Y; Wang W; Li M Technol Health Care; 2023; 31(S1):383-395. PubMed ID: 37066938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]