These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37285998)
41. Distribution of greenhouse gases in hyper-arid and arid areas of northern Chile and the contribution of the high altitude wetland microbiome (Salar de Huasco, Chile). Molina V; Eissler Y; Cornejo M; Galand PE; Dorador C; Hengst M; Fernandez C; Francois JP Antonie Van Leeuwenhoek; 2018 Aug; 111(8):1421-1432. PubMed ID: 29626330 [TBL] [Abstract][Full Text] [Related]
42. Archaeal community structure and pathway of methane formation on rice roots. Chin KJ; Lueders T; Friedrich MW; Klose M; Conrad R Microb Ecol; 2004 Jan; 47(1):59-67. PubMed ID: 15259270 [TBL] [Abstract][Full Text] [Related]
43. Methanogenic pathway and archaeal community structure in the sediment of eutrophic Lake Dagow: effect of temperature. Glissman K; Chin KJ; Casper P; Conrad R Microb Ecol; 2004 Oct; 48(3):389-99. PubMed ID: 15692859 [TBL] [Abstract][Full Text] [Related]
44. Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. Wang B; Stirling E; He Z; Ma B; Zhang H; Zheng X; Xiao F; Yan Q Sci Total Environ; 2021 Dec; 801():149723. PubMed ID: 34438138 [TBL] [Abstract][Full Text] [Related]
45. Zero-Valent Iron Enhances Biocathodic Carbon Dioxide Reduction to Methane. Dykstra CM; Pavlostathis SG Environ Sci Technol; 2017 Nov; 51(21):12956-12964. PubMed ID: 28994592 [TBL] [Abstract][Full Text] [Related]
46. Methane flux from flowback operations at a shale gas site. Shaw JT; Allen G; Pitt J; Shah A; Wilde S; Stamford L; Fan Z; Ricketts H; Williams PI; Bateson P; Barker P; Purvis R; Lowry D; Fisher R; France J; Coleman M; Lewis AC; Risk DA; Ward RS J Air Waste Manag Assoc; 2020 Dec; 70(12):1324-1339. PubMed ID: 32915694 [TBL] [Abstract][Full Text] [Related]
47. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane. Shin HC; Ju DH; Jeon BS; Choi O; Kim HW; Um Y; Lee DH; Sang BI PLoS One; 2015; 10(12):e0144999. PubMed ID: 26694756 [TBL] [Abstract][Full Text] [Related]
49. The linkage between methane production activity and prokaryotic community structure in the soil within a shale gas field in China. Wang YQ; Xiao GQ; Cheng YY; Wang MX; Sun BY; Zhou ZF Environ Sci Pollut Res Int; 2020 Mar; 27(7):7453-7462. PubMed ID: 31884532 [TBL] [Abstract][Full Text] [Related]
50. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Yvon-Durocher G; Allen AP; Bastviken D; Conrad R; Gudasz C; St-Pierre A; Thanh-Duc N; del Giorgio PA Nature; 2014 Mar; 507(7493):488-91. PubMed ID: 24670769 [TBL] [Abstract][Full Text] [Related]
51. Regeneration of unconventional natural gas by methanogens co-existing with sulfate-reducing prokaryotes in deep shale wells in China. Zhang Y; Yu Z; Zhang Y; Zhang H Sci Rep; 2020 Sep; 10(1):16042. PubMed ID: 32994524 [TBL] [Abstract][Full Text] [Related]
52. Constraining source attribution of methane in an alluvial aquifer with multiple recharge pathways. Iverach CP; Cendón DI; Beckmann S; Hankin SI; Manefield M; Kelly BFJ Sci Total Environ; 2020 Feb; 703():134927. PubMed ID: 31767334 [TBL] [Abstract][Full Text] [Related]
53. Response of Methanogenic Microbial Communities to Desiccation Stress in Flooded and Rain-Fed Paddy Soil from Thailand. Reim A; Hernández M; Klose M; Chidthaisong A; Yuttitham M; Conrad R Front Microbiol; 2017; 8():785. PubMed ID: 28529503 [TBL] [Abstract][Full Text] [Related]
54. A Model To Estimate Carbon Dioxide Injectivity and Storage Capacity for Geological Sequestration in Shale Gas Wells. Edwards RW; Celia MA; Bandilla KW; Doster F; Kanno CM Environ Sci Technol; 2015 Aug; 49(15):9222-9. PubMed ID: 26186496 [TBL] [Abstract][Full Text] [Related]
55. Microbial Involvement in Carbon Transformation via CH Goraj W; Szafranek-Nakonieczna A; Grządziel J; Polakowski C; Słowakiewicz M; Zheng Y; Gałązka A; Stępniewska Z; Pytlak A Biology (Basel); 2021 Aug; 10(8):. PubMed ID: 34440022 [TBL] [Abstract][Full Text] [Related]
56. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. Wu Z; Zhang X; Dong Y; Xu X; Xiong Z Environ Sci Pollut Res Int; 2018 Nov; 25(31):31307-31317. PubMed ID: 30194577 [TBL] [Abstract][Full Text] [Related]
57. Microbial dynamics and activity of denitrifying anaerobic methane oxidizers in China's estuarine and coastal wetlands. Niu Y; Zheng Y; Hou L; Gao D; Chen F; Pei C; Dong H; Liang X; Liu M Sci Total Environ; 2022 Feb; 806(Pt 1):150425. PubMed ID: 34560448 [TBL] [Abstract][Full Text] [Related]
58. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques. Porsch K; Wirth B; Tóth EM; Schattenberg F; Nikolausz M Microb Biotechnol; 2015 Sep; 8(5):801-14. PubMed ID: 25737100 [TBL] [Abstract][Full Text] [Related]
59. Microbial methane production in deep aquifer associated with the accretionary prism in Japan. Kimura H; Nashimoto H; Shimizu M; Hattori S; Yamada K; Koba K; Yoshida N; Kato K ISME J; 2010 Apr; 4(4):531-41. PubMed ID: 19956275 [TBL] [Abstract][Full Text] [Related]
60. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region. Townsend-Small A; Marrero JE; Lyon DR; Simpson IJ; Meinardi S; Blake DR Environ Sci Technol; 2015 Jul; 49(13):8175-82. PubMed ID: 26148556 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]